Edge computing is projected to have profound implications in the coming decades, proposed to provide solutions for applications such as augmented reality, predictive functionalities, and collaborative Cyber-Physical Systems (CPS). For such applications, edge computing addresses the new computational needs, as well as privacy, availability, and real-time constraints, by providing local high-performance computing capabilities to deal with the limitations and constraints of cloud and embedded systems. Our interests lie in the applications of edge computing as part of CPS, where several properties (or attributes) of trustworthiness, including safety, security, and predictability/availability are of particular concern, each facing challenges for the introduction of edge-based CPS. We present the results of a systematic mapping study, a kind of systematic literature survey, investigating the use of edge computing for CPS with a special emphasis on trustworthiness. The main contributions of this study are a detailed description of the current research efforts in edge-based CPS and the identification and discussion of trends and research gaps. The results show that the main body of research in edge-based CPS only to a very limited extent consider key attributes of system trustworthiness, despite many efforts referring to critical CPS and applications like intelligent transportation. More research and industrial efforts will be needed on aspects of trustworthiness of future edge-based CPS including their experimental evaluation. Such research needs to consider the multiple interrelated attributes of trustworthiness including safety, security, and predictability, and new methodologies and architectures to address them. It is further important to provide bridges and collaboration between edge computing and CPS disciplines.


翻译:在未来几十年中,边缘计算预计将产生深远影响,并提议为扩大现实、预测功能和网络-物理系统合作等应用提供解决方案。对于这些应用,边缘计算将满足新的计算需求以及隐私、可用性和实时限制等新的计算需求。通过提供当地高性能计算能力,应对云层和嵌入系统的限制和制约,我们的兴趣在于将边缘计算应用作为CPS的一部分,在这些应用中,包括安全、安保和可预测性/可用性等一些值得特别关注的优点(或属性),每个应用都面临着以边缘为基础的 CPS(CPS)的引入挑战。我们介绍了系统绘图研究的结果、一种系统的文献调查,调查CPS的优势计算使用情况,特别强调了信任性。这项研究的主要贡献是详细描述目前以边缘为基础的CPS的研究工作,以及查明和讨论趋势和研究差距。结果显示,以边缘为基础的CPS(或特性/)的主要研究机构仅在非常有限的范围内考虑系统可靠性的关键属性特征,尽管许多努力都提到CPS和智能性安全性研究,例如C的至关重要性研究、CPS和智能性安全性研究需要C和C的多重性分析。

0
下载
关闭预览

相关内容

边缘计算(英语:Edge computing),又译为边缘计算,是一种分散式运算的架构,将应用程序、数据资料与服务的运算,由网络中心节点,移往网络逻辑上的边缘节点来处理[1]。边缘运算将原本完全由中心节点处理大型服务加以分解,切割成更小与更容易管理的部分,分散到边缘节点去处理。边缘节点更接近于用户终端装置,可以加快资料的处理与传送速度,减少延迟。在这种架构下,资料的分析与知识的产生,更接近于数据资料的来源,因此更适合处理大数据。
最新《Transformers模型》教程,64页ppt
专知会员服务
306+阅读 · 2020年11月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2017年12月1日
VIP会员
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机 | CCF推荐会议信息10条
Call4Papers
5+阅读 · 2018年10月18日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
相关论文
Arxiv
46+阅读 · 2021年10月4日
Arxiv
12+阅读 · 2021年8月19日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
Arxiv
35+阅读 · 2019年11月7日
Semantics of Data Mining Services in Cloud Computing
Arxiv
4+阅读 · 2018年10月5日
Arxiv
3+阅读 · 2017年12月1日
Top
微信扫码咨询专知VIP会员