Nowadays, data-intensive applications face the problem of handling heterogeneous data with sometimes mutually exclusive use cases and soft non-functional goals such as consistency and availability. Since no single platform copes everything, various stores (RDBMS, NewSQL, NoSQL) for different workloads and use-cases have been developed. However, since each store is only a specialization, this motivates progress in polyglot data management emerged new systems called Mult- and Polystores. They are trying to access different stores transparently and combine their capabilities to achieve one or multiple given use-cases. This paper describes representative real-world use cases for data-intensive applications (OLTP and OLAP). It derives a set of requirements for polyglot data stores. Subsequently, we discuss the properties of selected Multi- and Polystores and evaluate them based on given needs illustrated by three common application use cases. We classify them into functional features, query processing technique, architecture and adaptivity and reveal a lack of capabilities, especially in changing conditions tightly integration. Finally, we outline the benefits and drawbacks of the surveyed systems and propose future research directions and current challenges in this area.
翻译:目前,数据密集型应用程序面临处理不同数据的问题,有时是相互排斥的使用案例和软性非功能性目标,例如一致性和可用性。由于没有一个单一平台能应付所有问题,因此已经开发了各种商店(RDBMS、NewSQL、NoSQL),用于不同的工作量和使用案例;然而,由于每个商店只是一个专门化,这促使在多球数据管理方面取得进展,产生了称为Mult和Pollystories的新系统。它们试图以透明的方式进入不同的商店,并将它们实现一个或多个特定使用案例的能力结合起来。本文描述了具有代表性的现实世界使用数据密集应用案例(OLTP和OLAP)的情况。它提出了一套多球数据仓库的要求。随后,我们根据三个通用应用程序使用案例所说明的特定需求,讨论选定多球和多球场的特性,并评估这些特性。我们将其分为功能特征、查询处理技术、结构、适应性和适应性,并揭示缺乏能力,特别是在改变条件方面。我们概述了被调查的系统的好处和引向未来研究方向和目前的挑战。