This paper introduces H-STREAM, a big stream/data processing pipelines evaluation engine that proposes stream processing operators as micro-services to support the analysis and visualisation of Big Data streams stemming from IoT (Internet of Things) environments. H-STREAM micro-services combine stream processing and data storage techniques tuned depending on the number of things producing streams, the pace at which they produce them, and the physical computing resources available for processing them online and delivering them to consumers. H-STREAM delivers stream processing and visualisation micro-services installed in a cloud environment. Micro-services can be composed for implementing specific stream aggregation analysis pipelines as queries. The paper presents an experimental validation using Microsoft Azure as a deployment environment for testing the capacity of H-STREAM for dealing with velocity and volume challenges in an (i) a neuroscience experiment and (in) a social connectivity analysis scenario running on IoT farms.
翻译:本文介绍H-STREAM,这是一个大型流/数据处理管道评价引擎,它建议流处理操作员作为微型服务,支持分析和直观分析来自 IoT(物联网)环境的大数据流,H-STREAM微观服务结合了流处理和数据储存技术,这些技术取决于产生流的物品的数量、它们生产的速度以及可用于在线处理和将它们交付给消费者的物理计算资源。H-STREAM提供流处理和在云环境中安装的直观化微服务。微服务可以构成执行特定流汇总分析管道的查询。该文件介绍了利用微软Azure作为部署环境的实验性验证,以微软Azure作为测试H-STREAM在(一)神经科学实验和(一)在IoT农场上运行的社会连接分析情景,以测试速度和体积挑战的能力。