We prove that there is a Hermitian self-orthogonal $k$-dimensional truncated generalised Reed-Solomon of length $n \leqslant q^2$ over ${\mathbb F}_{q^2}$ if and only if there is a polynomial $g \in {\mathbb F}_{q^2}$ of degree at most $(q-k)q-1$ such that $g+g^q$ has $q^2-n$ zeros. This allows us to determine the smallest $n$ for which there is a Hermitian self-orthogonal $k$-dimensional truncated generalised Reed-Solomon of length $n$ over ${\mathbb F}_{q^2}$, verifying a conjecture of Grassl and R\"otteler. We also provide examples of Hermitian self-orthogonal $k$-dimensional generalised Reed-Solomon codes of length $q^2+1$ over ${\mathbb F}_{q^2}$, for $k=q-1$ and $q$ an odd power of two.
翻译:我们证明,只有(q-k) 最高为$(q-k) 的多角度美元和最高为$(q-k) Q-1美元(美元-克) 的学位美元,例如, $g+++ ⁇ q q 美元为零美元。这样,我们才能确定一个最小的一元(美元),其长度为$(leqslan) = leqslant q% 2美元以上,其长度为$(mathbb) 美元以上为$(k-q)2 美元,其长度为$(g-k) 美元以上为$(g-k) +2美元平方美元。我们还提供了赫里米特的一元(g) $(k) $(k) 美元(美元) 普通Reed- Solomon 代码,其长度为$(q%2+1美元以上为$(mathb) F ⁇ 2美元 和两美元(k) 美元(美元)