Data-driven intelligent applications in modern online services have become ubiquitous. These applications are usually hosted in the untrusted cloud computing infrastructure. This poses significant security risks since these applications rely on applying machine learning algorithms on large datasets which may contain private and sensitive information. To tackle this challenge, we designed secureTF, a distributed secure machine learning framework based on Tensorflow for the untrusted cloud infrastructure. secureTF is a generic platform to support unmodified TensorFlow applications, while providing end-to-end security for the input data, ML model, and application code. secureTF is built from ground-up based on the security properties provided by Trusted Execution Environments (TEEs). However, it extends the trust of a volatile memory region (or secure enclave) provided by the single node TEE to secure a distributed infrastructure required for supporting unmodified stateful machine learning applications running in the cloud. The paper reports on our experiences about the system design choices and the system deployment in production use-cases. We conclude with the lessons learned based on the limitations of our commercially available platform, and discuss open research problems for the future work.
翻译:现代在线服务中由数据驱动的智能应用已变得无处不在。 这些应用通常在不可靠的云计算基础设施中托管。 这带来巨大的安全风险,因为这些应用依赖于在大型数据集上应用机器学习算法,这些数据集可能包含私人和敏感的信息。 为了应对这一挑战,我们设计了一个安全TF, 一个基于无信任云基础设施Tensorflow的分布式安全机学习框架。 安全TesorFlow是一个通用平台,用于支持未经修改的TensorFlow应用程序,同时为输入数据、 ML 模型和应用代码提供端到端的安全。 安全TF是根据信任执行环境(TEEs)提供的安全属性建立的。 但是,它扩大了单节点TEE提供的一个挥发性记忆区(或安全飞地)的信任,以确保支持在云中运行的未调整的状态机学习应用程序所需的分布式基础设施。 安全TesorFlow是一个通用平台, 用于为输入数据、 ML 模型和应用代码提供端到端的安全性安全性。 安全性TFTF是建立在基于我们商业可用平台所具备的局限性基础上的基层。 我们总结的经验教训, 并讨论未来工作的公开研究问题。