Peer review is central to academic publishing, but the growing volume of submissions is straining the process. This motivates the development of computational approaches to support peer review. While each review is tailored to a specific paper, reviewers often make assessments according to certain aspects such as Novelty, which reflect the values of the research community. This alignment creates opportunities for standardizing the reviewing process, improving quality control, and enabling computational support. While prior work has demonstrated the potential of aspect analysis for peer review assistance, the notion of aspect remains poorly formalized. Existing approaches often derive aspects from review forms and guidelines, yet data-driven methods for aspect identification are underexplored. To address this gap, our work takes a bottom-up approach: we propose an operational definition of aspect and develop a data-driven schema for deriving aspects from a corpus of peer reviews. We introduce a dataset of peer reviews augmented with aspects and show how it can be used for community-level review analysis. We further show how the choice of aspects can impact downstream applications, such as LLM-generated review detection. Our results lay a foundation for a principled and data-driven investigation of review aspects, and pave the path for new applications of NLP to support peer review.
翻译:同行评审是学术出版的核心环节,但日益增长的投稿量正使评审过程面临压力。这推动了计算方法的开发以支持同行评审。尽管每篇评审都针对特定论文定制,但评审者通常依据某些维度(如创新性)进行评估,这些维度反映了研究社区的价值观。这种一致性为标准化评审流程、提升质量控制以及实现计算支持创造了机会。虽然先前研究已展示了维度分析在辅助同行评审方面的潜力,但维度的概念仍缺乏形式化定义。现有方法常从评审表格和指南中推导维度,而基于数据驱动的维度识别方法尚未得到充分探索。为填补这一空白,本研究采用自下而上的方法:我们提出了维度的操作性定义,并开发了一种数据驱动的框架,用于从同行评审语料库中推导维度。我们引入了一个增强维度标注的同行评审数据集,展示了其如何用于社区层面的评审分析。我们进一步揭示了维度的选择如何影响下游应用(例如LLM生成评审的检测)。本研究结果为基于原则和数据驱动的评审维度研究奠定了基础,并为自然语言处理在支持同行评审中的新应用铺平了道路。