Background: Trends in hospitalised case-fatality risk (HFR), risk of intensive care unit (ICU) admission and lengths of stay for patients hospitalised for COVID-19 in England over the pre-vaccination era are unknown. Methods: Data on hospital and ICU admissions with COVID-19 at 31 NHS trusts in England were collected by Public Health England's Severe Acute Respiratory Infections surveillance system and linked to death information. We applied parametric multi-state mixture models, accounting for censored outcomes and regressing risks and times between events on month of admission, geography, and baseline characteristics. Findings: 20,785 adults were admitted with COVID-19 in 2020. Between March and June/July/August estimated HFR reduced from 31.9% (95% confidence interval 30.3-33.5%) to 10.9% (9.4-12.7%), then rose steadily from 21.6% (18.4-25.5%) in September to 25.7% (23.0-29.2%) in December, with steeper increases among older patients, those with multi-morbidity and outside London/South of England. ICU admission risk reduced from 13.9% (12.8-15.2%) in March to 6.2% (5.3-7.1%) in May, rising to a high of 14.2% (11.1-17.2%) in September. Median length of stay in non-critical care increased during 2020, from 6.6 to 12.3 days for those dying, and from 6.1 to 9.3 days for those discharged. Interpretation: Initial improvements in patient outcomes, corresponding to developments in clinical practice, were not sustained throughout 2020, with HFR in December approaching the levels seen at the start of the pandemic, whilst median hospital stays have lengthened. The role of increased transmission, new variants, case-mix and hospital pressures in increasing COVID-19 severity requires urgent further investigation.


翻译:20,785名成年人在2020年接受COVID-19治疗; 估计HFR在3月至7月/8月期间从31.9%(95%的置信区间30.3-33.5%)下降到10.9%(9.4-12.7%),然后从9月的21.6%(18.4-25.5%)上升到20.7%(23.0-29.2%),从10月的死亡率上升到25.7%(23.0-29.2%),老年病人、多发病人和不发病者之间在住院、地理和基线特征等月份事件之间出现不断上升的风险和时间。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
The Measure of Intelligence
Arxiv
6+阅读 · 2019年11月5日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
学习自然语言处理路线图
专知会员服务
137+阅读 · 2019年9月24日
相关资讯
计算机 | 中低难度国际会议信息6条
Call4Papers
7+阅读 · 2019年5月16日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
医学 | 顶级SCI期刊专刊/国际会议信息4条
Call4Papers
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
Top
微信扫码咨询专知VIP会员