We propose a way of transforming the problem of conditional density estimation into a single nonparametric regression task via the introduction of auxiliary samples. This allows leveraging regression methods that work well in high dimensions, such as neural networks and decision trees. Our main theoretical result characterizes and establishes the convergence of our estimator to the true conditional density in the data limit. We develop condensité, a method that implements this approach. We demonstrate the benefit of the auxiliary samples on synthetic data and showcase that condensité can achieve good out-of-the-box results. We evaluate our method on a large population survey dataset and on a satellite imaging dataset. In both cases, we find that condensité matches or outperforms the state of the art and yields conditional densities in line with established findings in the literature on each dataset. Our contribution opens up new possibilities for regression-based conditional density estimation and the empirical results indicate strong promise for applied research.


翻译:我们提出了一种通过引入辅助样本,将条件密度估计问题转化为单一非参数回归任务的方法。这使得能够利用在高维数据中表现良好的回归方法,例如神经网络和决策树。我们的主要理论结果刻画并证明了在数据极限下,我们的估计器收敛于真实条件密度。我们开发了 condensité 方法来实现这一途径。我们在合成数据上展示了辅助样本的益处,并证明 condensité 能够取得良好的开箱即用效果。我们在一个大规模人口调查数据集和一个卫星成像数据集上评估了我们的方法。在这两种情况下,我们发现 condensité 达到或超越了现有技术水平,并且产生的条件密度与各数据集文献中的既定发现相符。我们的贡献为基于回归的条件密度估计开辟了新的可能性,实证结果表明其在应用研究中具有广阔前景。

0
下载
关闭预览

相关内容

《用于代码弱点识别的 LLVM 中间表示》CMU
专知会员服务
14+阅读 · 2022年12月12日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
【NeurIPS2019】图变换网络:Graph Transformer Network
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月16日
VIP会员
相关资讯
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员