We introduce CLIMATE-FEVER, a new publicly available dataset for verification of climate change-related claims. By providing a dataset for the research community, we aim to facilitate and encourage work on improving algorithms for retrieving evidential support for climate-specific claims, addressing the underlying language understanding challenges, and ultimately help alleviate the impact of misinformation on climate change. We adapt the methodology of FEVER [1], the largest dataset of artificially designed claims, to real-life claims collected from the Internet. While during this process, we could rely on the expertise of renowned climate scientists, it turned out to be no easy task. We discuss the surprising, subtle complexity of modeling real-world climate-related claims within the \textsc{fever} framework, which we believe provides a valuable challenge for general natural language understanding. We hope that our work will mark the beginning of a new exciting long-term joint effort by the climate science and AI community.
翻译:我们引入了CLIMATE-FEWE, 这是用于核查气候变化相关主张的一个新的公开数据集。 通过为研究界提供数据集, 我们旨在便利和鼓励改进算法的工作, 以获取对特定气候主张的证据支持, 解决基本的语言理解挑战, 并最终帮助减轻错误信息对气候变化的影响。 我们将人工设计的主张的最大数据集FEWE[1] 的方法适应互联网上收集到的真实生活主张。 在这一过程中, 我们可以依赖知名气候科学家的专门知识, 但结果却并非易事。 我们讨论了在\ textsc{fever}框架内模拟真实世界气候相关主张的惊人而微妙的复杂性, 我们认为这为一般自然语言理解提供了宝贵的挑战。 我们希望我们的工作将标志着气候科学和AI界新的令人振奋的长期联合努力的开始。