In recent years, video data has dominated internet traffic and becomes one of the major data formats. With the emerging 5G and internet of things (IoT) technologies, more and more videos are generated by edge devices, sent across networks, and consumed by machines. The volume of video consumed by machine is exceeding the volume of video consumed by humans. Machine vision tasks include object detection, segmentation, tracking, and other machine-based applications, which are quite different from those for human consumption. On the other hand, due to large volumes of video data, it is essential to compress video before transmission. Thus, efficient video coding for machines (VCM) has become an important topic in academia and industry. In July 2019, the international standardization organization, i.e., MPEG, created an Ad-Hoc group named VCM to study the requirements for potential standardization work. In this paper, we will address the recent development activities in the MPEG VCM group. Specifically, we will first provide an overview of the MPEG VCM group including use cases, requirements, processing pipelines, plan for potential VCM standards, followed by the evaluation framework including machine-vision tasks, dataset, evaluation metrics, and anchor generation. We then introduce technology solutions proposed so far and discuss the recent responses to the Call for Evidence issued by MPEG VCM group.


翻译:近年来,视频数据在互联网交通中占主导地位,成为主要数据格式之一。随着5G和5G(互联网)技术的出现,越来越多的视频由边缘设备产生,通过网络传送,由机器消耗。机器的视频消耗量超过了人类消耗的视频量。机器的视频任务包括物体探测、分解、跟踪和其他机器应用,这与人类消费完全不同。另一方面,由于视频数据数量巨大,在传输前必须压缩视频。因此,机器的高效视频编码已成为学术界和工业界的一个重要话题。2019年7月,国际标准化组织,即MPEG,创建了一个名为VCM的A-Hoc小组,研究潜在标准化工作的要求。在本文件中,我们将讨论MPEG VCM集团最近的发展活动。具体地说,我们将首先概述MPEG VCM集团,包括使用案例、要求、处理管道、潜在VCM标准计划,随后由评价框架(即MPEG)所遵循的评估框架,包括最近推出的机器-CM技术解决方案、数据评估,然后我们讨论MEG的模型制作模型,然后讨论最新版本。

0
下载
关闭预览

相关内容

MPEG 是“动态图像专家组”(Moving Picture Experts Group)的简称。成立于1988年,致力开发视频、音频的压缩编码技术。
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Arxiv
16+阅读 · 2021年1月27日
Arxiv
19+阅读 · 2020年12月23日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
12+阅读 · 2019年3月14日
VIP会员
相关VIP内容
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
Top
微信扫码咨询专知VIP会员