We follow up on the idea of Lars Arge to rephrase the Reduce and Apply procedures of Binary Decision Diagrams (BDDs) as iterative I/O-efficient algorithms. We identify multiple avenues to simplify and improve the performance of his proposed algorithms. Furthermore, we extend the technique to other common BDD operations, many of which are not derivable using Apply operations alone, and we provide asymptotic improvements for the procedures that can be derived using Apply. These algorithms are implemented in a new BDD package, named Adiar. We see very promising results when comparing the performance of Adiar with conventional BDD package that use recursive depth-first algorithms. For instances larger than 9.5 GiB, our algorithms, in parts using the disk, are 1.47 to 3.69 times slower compared to CUDD and Sylvan, exclusively using main memory. Yet, our proposed techniques are able to obtain this performance at a fraction of the main memory needed by conventional BDD packages to function. Furthermore, with Adiar we are able to manipulate BDDs that outgrow main memory and so surpass the limits of other BDD packages.


翻译:我们跟进了Lars Arge的想法,将二进制决定图(BDDs)的减少和应用程序改写为迭代 I/O-效率算法。我们找出了简化和改进他拟议算法绩效的多种途径。此外,我们将这一技术推广到其他通用的BDD操作,其中许多无法单靠应用操作推断出来,我们为使用应用生成的程序提供了无症状的改进。这些算法是在名为Adiar的新的BDD软件包中实施的。在将Adiar的性能与使用循环深度第一算法的常规BDD软件包进行比较时,我们看到非常有希望的结果。对于超过9.5 GB的功能,我们使用磁盘的部件的算法比CUDDD和Sylvan慢1.47至3.69倍,仅使用主内存。然而,我们提出的技术能够在常规的BDDD软件包所需的主要内存的一小部分内存中取得这种性能。此外,与Adiar相比,我们能够对超出其他BDDDs主内存限度。

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年12月3日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
9+阅读 · 2021年10月26日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
计算机 | 国际会议信息5条
Call4Papers
3+阅读 · 2019年7月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员