Many code changes that developers make in their projects are repeated and constitute recurrent change patterns. It is of interest to collect such patterns from the version history of open-source repositories and suggest the most useful of them as quick fixes. In this paper, we present Revizor - a tool aimed to build custom plugins for PyCharm, a popular Python IDE. A Revizor-based plugin can take change patterns and highlight potential places for their application in the developer's code editor. If the developer accepts the quick fix, the plugin automatically performs the edit. Our approach uses a graph-based representation of code changes, which allows it to support complex distributed code patterns. Experienced developers have also rated the usability and the performance of such Revizor-based plugin positively. The source code of the tool and test plugin prototype are available on GitHub: https://github.com/JetBrains-Research/revizor. A demonstration video with a short tool description can be found on YouTube: https://youtu.be/5eLs14nco7E.


翻译:开发者在项目中反复修改许多代码, 并构成反复变化模式。 有趣的是, 从开放源码库的版本历史中收集这些模式, 并推荐其中最有用的模式作为快速修正 。 在此文件中, 我们介绍Revizor ---- 一个旨在为PyCharm建立自定义插件的工具, 受欢迎的 Python IDE 。 一个基于 Revizor 的插件可以改变模式, 并在开发者代码编辑器中突出其应用的潜在位置 。 如果开发者接受快速修正, 插件自动进行编辑 。 我们的方法使用基于图形的代码修改表达方式, 从而可以支持复杂的分布代码模式 。 经验开发者还积极评价了这种基于Revizor 的插件的可用性和性 。 该工具的源代码和测试插件原型可以在 GitHub 上查阅 : https://github. com/ JetBrains- Research/ revizor 。 在YouTube上可以看到一个带有简短工具描述的演示视频: https://yotututu.be/5Ls14nco7E 。

0
下载
关闭预览

相关内容

Automator是苹果公司为他们的Mac OS X系统开发的一款软件。 只要通过点击拖拽鼠标等操作就可以将一系列动作组合成一个工作流,从而帮助你自动的(可重复的)完成一些复杂的工作。Automator还能横跨很多不同种类的程序,包括:查找器、Safari网络浏览器、iCal、地址簿或者其他的一些程序。它还能和一些第三方的程序一起工作,如微软的Office、Adobe公司的Photoshop或者Pixelmator等。
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
0+阅读 · 2021年8月3日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员