Visible Light Communication (VLC) is one the most promising enabling technology for future 6G networks to overcome Radio-Frequency (RF)-based communication limitations thanks to a broader bandwidth, higher data rate, and greater efficiency. However, from the security perspective, VLCs suffer from all known wireless communication security threats (e.g., eavesdropping and integrity attacks). For this reason, security researchers are proposing innovative Physical Layer Security (PLS) solutions to protect such communication. Among the different solutions, the novel Reflective Intelligent Surface (RIS) technology coupled with VLCs has been successfully demonstrated in recent work to improve the VLC communication capacity. However, to date, the literature still lacks analysis and solutions to show the PLS capability of RIS-based VLC communication. In this paper, we combine watermarking and jamming primitives through the Watermark Blind Physical Layer Security (WBPLSec) algorithm to secure VLC communication at the physical layer. Our solution leverages RIS technology to improve the security properties of the communication. By using an optimization framework, we can calculate RIS phases to maximize the WBPLSec jamming interference schema over a predefined area in the room. In particular, compared to a scenario without RIS, our solution improves the performance in terms of secrecy capacity without any assumption about the adversary's location. We validate through numerical evaluations the positive impact of RIS-aided solution to increase the secrecy capacity of the legitimate jamming receiver in a VLC indoor scenario. Our results show that the introduction of RIS technology extends the area where secure communication occurs and that by increasing the number of RIS elements the outage probability decreases.


翻译:可见光光通信(VLC)是未来6G网络最有希望的技术之一,通过宽宽带带宽带宽带宽、数据率更高、效率更高,为未来6G网络克服基于无线电-频基通信限制提供了最有希望的赋能技术。然而,从安全角度看,VLC受到所有已知的无线通信安全威胁(例如窃听和完整攻击)的影响。为此,安全研究人员正在提出保护这种通信的创新的物理层安全(PLS)算法。在不同的解决方案中,创新的反思智能地面技术(RIS)以及VLCs在近期提高VLC通信能力的工作中得到了成功展示。然而,迄今为止,文献仍然缺乏分析和解决方案来展示基于RISVLC通信的PLS能力。在本文中,我们将水标记和阻断原始部分的算法结合起来,以便在物理层确保VLC通信的安全性能。我们的解决方案利用RIS技术来改善通信的安全性能。通过一个优化框架,我们可以计算RIS各阶段的进展阶段,在不增加甚深处的精确度上显示我们的任何干扰。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年7月23日
Arxiv
0+阅读 · 2022年7月22日
An Attentive Survey of Attention Models
Arxiv
43+阅读 · 2020年12月15日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员