We survey over 100 face datasets constructed between 1976 to 2019 of 145 million images of over 17 million subjects from a range of sources, demographics and conditions. Our historical survey reveals that these datasets are contextually informed, shaped by changes in political motivations, technological capability and current norms. We discuss how such influences mask specific practices (some of which may actually be harmful or otherwise problematic) and make a case for the explicit communication of such details in order to establish a more grounded understanding of the technology's function in the real world.


翻译:我们从1976年到2019年共建立了100多个面对面的数据集,由来自各种来源、人口和条件的1 700多万个主题的1.45亿张图像组成。我们的历史调查显示,这些数据集根据具体情况了解情况,受政治动机、技术能力和现行规范变化的影响。我们讨论了这些影响如何掩盖具体做法(其中一些做法实际上可能有害或有其他问题),并论证如何明确传达这些细节,以便更深入地了解技术在现实世界中的功能。

0
下载
关闭预览

相关内容

深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
已删除
将门创投
4+阅读 · 2020年1月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
20+阅读 · 2020年6月8日
Deep Learning for Deepfakes Creation and Detection
Arxiv
6+阅读 · 2019年9月25日
Generative Adversarial Networks: A Survey and Taxonomy
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
VIP会员
相关VIP内容
深度强化学习策略梯度教程,53页ppt
专知会员服务
183+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
已删除
将门创投
4+阅读 · 2020年1月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员