Empirical networks are typically sparse yet display pronounced degree variation, persistent transitivity, and systematic degree mixing. Most sparse generators control at most two of these features, and assortativity is often achieved by degree-preserving rewiring, which obscures the mechanism-parameter link. We introduce CoLaS (copula-seeded local latent-space graphs), a modular latent-variable model that separates marginal specifications from dependence. Each node has a popularity variable governing degree heterogeneity and a latent geometric location governing locality. A low-dimensional copula couples popularity and location, providing an interpretable dependence parameter that tunes degree mixing while leaving the chosen marginals unchanged. Under shrinking-range locality, edges are conditionally independent, the graph remains sparse, and clustering does not vanish. We develop sparse-limit theory for degrees, transitivity, and assortativity. Degrees converge to mixed-Poisson limits and we establish a degree-tail dichotomy: with fixed-range local kernels, degree tails are necessarily light, even under heavy-ailed popularity. To recover power-law degrees without sacrificing sparsity or locality, we propose CoLaS-HT, a minimal tail-inheriting extension in which effective connection ranges grow with popularity. Finally, under an identifiability condition, we provide a consistent one-graph calibration method based on jointly matching transitivity and assortativity.
翻译:经验网络通常具有稀疏性,但同时表现出显著的度分布异质性、持续的传递性以及系统性的度混合特征。大多数稀疏生成器最多只能控制其中两个特征,而同配性往往通过度保持重连实现,这模糊了机制与参数之间的联系。本文提出CoLaS(copula种子局部隐空间图)——一种模块化的隐变量模型,将边际设定与依赖关系分离。每个节点拥有控制度异质性的流行度变量和控制局部性的隐式几何位置。通过低维copula耦合流行度与位置,提供可解释的依赖参数以调节度混合,同时保持预设的边际分布不变。在收缩范围局部性条件下,边保持条件独立,图结构维持稀疏性,且聚类系数不衰减。我们建立了度分布、传递性与同配性的稀疏极限理论。度分布收敛于混合泊松极限,并证明了度分布尾部二分性:在使用固定范围局部核时,即使流行度服从重尾分布,度分布尾部必然呈现轻尾特征。为在保持稀疏性与局部性的同时恢复幂律度分布,我们提出CoLaS-HT——一种最小化的尾部继承扩展方案,使有效连接范围随流行度增长而扩大。最后,在可识别性条件下,我们提出基于联合匹配传递性与同配性的一致性单图校准方法。