We present an in-depth analysis of the impact of multi-word suggestion choices from a neural language model on user behaviour regarding input and text composition in email writing. Our study for the first time compares different numbers of parallel suggestions, and use by native and non-native English writers, to explore a trade-off of "efficiency vs ideation", emerging from recent literature. We built a text editor prototype with a neural language model (GPT-2), refined in a prestudy with 30 people. In an online study (N=156), people composed emails in four conditions (0/1/3/6 parallel suggestions). Our results reveal (1) benefits for ideation, and costs for efficiency, when suggesting multiple phrases; (2) that non-native speakers benefit more from more suggestions; and (3) further insights into behaviour patterns. We discuss implications for research, the design of interactive suggestion systems, and the vision of supporting writers with AI instead of replacing them.
翻译:我们的研究首次比较了不同数目的平行建议以及本地和非本地英文作家使用的建议,以探讨从最近的文献中产生的“效率与思想”的权衡。我们建立了一个带有神经语言模型(GPT-2)的文本编辑原型(GPT-2),该原型在30人的预科中得到了完善。在一项在线研究(N=156)中,人们在四种条件下(0/1/3/6)以电子邮件形式提出平行建议。我们的研究结果显示:(1) 在提出多个短语时,想法的好处和效率的成本;(2) 非本地语言发言人更多地受益于更多的建议;(3) 对行为模式的进一步深入了解。我们讨论了研究的影响、交互式建议系统的设计以及用AI支持作者而不是替换他们的设想。