The advances in agile micro aerial vehicles (MAVs) have shown great potential in replacing humans for labor-intensive or dangerous indoor investigation, such as warehouse management and fire rescue. However, the design of a state estimation system that enables autonomous flight poses fundamental challenges in such dim or smoky environments. Current dominated computer-vision based solutions only work in well-lighted texture-rich environments. This paper addresses the challenge by proposing Marvel, an RF backscatter-based state estimation system with online initialization and calibration. Marvel is nonintrusive to commercial MAVs by attaching backscatter tags to their landing gears without internal hardware modifications, and works in a plug-and-play fashion with an automatic initialization module. Marvel is enabled by three new designs, a backscatter-based pose sensing module, an online initialization and calibration module, and a backscatter-inertial super-accuracy state estimation algorithm. We demonstrate our design by programming a commercial MAV to autonomously fly in different trajectories. The results show that Marvel supports navigation within a range of 50 m or through three concrete walls, with an accuracy of 34 cm for localization and 4.99 degrees for orientation estimation. We further demonstrate our online initialization and calibration by comparing to the perfect initial parameter measurements from burdensome manual operations.


翻译:灵活的微型飞行器(MAVs)的进步显示了在取代人进行劳动密集型或危险的室内调查(如仓库管理和消防救援)方面的巨大潜力。然而,设计一个能够自动飞行的国家估计系统在这种暗淡或烟雾环境中构成了根本性挑战。目前占主导地位的基于计算机的解决方案只在光滑质丰富的环境中发挥作用。本文件通过提出Marvel(一个基于RF的后向散射的州估算系统,有在线初始化和校准)。 Marvel(Marvel)对于商业MAV来说是没有侵入性的,因为它在没有内部硬件修改的情况下,将反射标记附在起落装置上,并且用一个自动初始初始初始化模块以插接接接机方式工作。Marvel(Marvel)是由三种新设计、基于后向型的外向型外传动感感感感感感应器驱动的,一个在线初始初始初始初始启动模块和三面校准校准系统。我们通过编程商业MAV(MA)到不同轨迹的自主飞行来展示我们的设计。结果显示,Marvel(Marvel)支持在50米的初始精确度范围内的导航,或者三面的校准校准定位校准的校准的校准方向,我们从40的初始校准方向将39的校正的校正的校正的校正的校正的校正的校正的校正。

0
下载
关闭预览

相关内容

专知会员服务
53+阅读 · 2020年9月7日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
75+阅读 · 2020年4月24日
【CVPR2020-谷歌】多目标(车辆)跟踪与检测框架 RetinaTrack
专知会员服务
45+阅读 · 2020年4月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
鲁棒机器学习相关文献集
专知
8+阅读 · 2019年8月18日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
【泡泡一分钟】在CPU上进行实时无监督单目深度估计
泡泡机器人SLAM
17+阅读 · 2019年5月10日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡前沿追踪】跟踪SLAM前沿动态系列之IROS2018
泡泡机器人SLAM
29+阅读 · 2018年10月28日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
6+阅读 · 2018年3月28日
VIP会员
Top
微信扫码咨询专知VIP会员