This paper introduces a novel quasi-likelihood extension of the generalised Kendall \(τ_{a}\) estimator, together with an extension of the Kemeny metric and its associated covariance and correlation forms. The central contribution is to show that the U-statistic structure of the proposed coefficient \(τ_κ\) naturally induces a quasi-maximum likelihood estimation (QMLE) framework, yielding consistent Wald and likelihood ratio test statistics. The development builds on the uncentred correlation inner-product (Hilbert space) formulation of Emond and Mason (2002) and resolves the associated sub-Gaussian likelihood optimisation problem under the \(\ell_{2}\)-norm via an Edgeworth expansion of higher-order moments. The Kemeny covariance coefficient \(τ_κ\) is derived within a novel likelihood framework for pairwise comparison-continuous random variables, enabling direct inference on population-level correlation between ranked or weakly ordered datasets. Unlike existing approaches that focus on marginal or pairwise summaries, the proposed framework supports sample-observed weak orderings and accommodates ties without information loss. Drawing parallels with Thurstone's Case V latent ordering model, we derive a quasi-likelihood-based tie model with analytic standard errors, generalising classical U-statistics. The framework applies to general continuous and discrete random variables and establishes formal equivalence to Bradley-Terry and Thurstone models, yielding a uniquely identified linear representation with both analytic and likelihood-based estimators.


翻译:本文提出了一种广义Kendall \(τ_{a}\)估计量的新型拟似然扩展,以及Kemeny度量及其协方差与相关形式的扩展。核心贡献在于证明所提出系数\(τ_κ\)的U统计量结构自然导出一个拟最大似然估计框架,从而产生一致的Wald检验与似然比检验统计量。该发展建立在Emond与Mason(2002)提出的无中心相关内积(希尔伯特空间)表述基础上,并通过高阶矩的Edgeworth展开解决了在\(\ell_{2}\)范数下相关的次高斯似然优化问题。Kemeny协方差系数\(τ_κ\)是在一种针对成对比较连续随机变量的新型似然框架中推导得出的,使得能够直接推断排序或弱序数据集之间的总体层面相关性。与现有关注边际或成对汇总的方法不同,所提出的框架支持样本观测的弱序关系,并能无信息损失地处理平局情况。通过与Thurstone的Case V潜在排序模型进行类比,我们推导出一个具有解析标准误差的基于拟似然的平局模型,从而推广了经典U统计量。该框架适用于一般连续与离散随机变量,并建立了与Bradley-Terry及Thurstone模型的正式等价性,产生了一个兼具解析估计与基于似然估计的独特可识别线性表示。

0
下载
关闭预览

相关内容

【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
41+阅读 · 2021年2月12日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
【NeurIPS2025】大型语言模型中关系解码线性算子的结构
专知会员服务
10+阅读 · 2025年11月2日
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
41+阅读 · 2021年2月12日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员