Probability forecasts for binary events play a central role in many applications. Their quality is commonly assessed with proper scoring rules, which assign forecasts a numerical score such that a correct forecast achieves a minimal expected score. In this paper, we construct e-values for testing the statistical significance of score differences of competing forecasts in sequential settings. E-values have been proposed as an alternative to p-values for hypothesis testing, and they can easily be transformed into conservative p-values by taking the multiplicative inverse. The e-values proposed in this article are valid in finite samples without any assumptions on the data generating processes. They also allow optional stopping, so a forecast user may decide to interrupt evaluation taking into account the available data at any time and still draw statistically valid inference, which is generally not true for classical p-value based tests. In a case study on postprocessing of precipitation forecasts, state-of-the-art forecasts dominance tests and e-values lead to the same conclusions.


翻译:对二进制事件的预测在许多应用中发挥着核心作用。对二进制事件预测的质量通常以适当的评分规则来评估,这些评分的预测数字得分的准确预测达到最低的预期得分。在本文中,我们构建电子价值,以测试相竞预测在相继环境下的得分差异的统计意义。提出了电子价值,作为假设测试的P值的替代物,它们很容易通过采用多复制性反演而转化为保守的p值。本条提出的电子价值,在不假定数据生成过程的有限样本中是有效的。它们还允许选择性停用,因此预测用户可以决定中断评估,同时考虑任何时间现有的数据,并仍然在统计上进行有效的推论,对于传统的基于P价值的测试来说,这种推论通常并不适用。在关于降水预测后处理的案例研究中,最先进的预测优势测试和电子价值导致相同的结论。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
7+阅读 · 2020年6月29日
Inferred successor maps for better transfer learning
Arxiv
23+阅读 · 2018年8月3日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2018年1月31日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】(Keras)LSTM多元时序预测教程
机器学习研究会
24+阅读 · 2017年8月14日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Top
微信扫码咨询专知VIP会员