Generative models and those with computationally intractable likelihoods are widely used to describe complex systems in the natural sciences, social sciences, and engineering. Fitting these models to data requires likelihood-free inference methods that explore the parameter space without explicit likelihood evaluations, relying instead on sequential simulation, which comes at the cost of computational efficiency and extensive tuning. We develop an alternative framework called kernel-adaptive synthetic posterior estimation (KASPE) that uses deep learning to directly reconstruct the mapping between the observed data and a finite-dimensional parametric representation of the posterior distribution, trained on a large number of simulated datasets. We provide theoretical justification for KASPE and a formal connection to the likelihood-based approach of expectation propagation. Simulation experiments demonstrate KASPE's flexibility and performance relative to existing likelihood-free methods including approximate Bayesian computation in challenging inferential settings involving posteriors with heavy tails, multiple local modes, and over the parameters of a nonlinear dynamical system.


翻译:生成模型及具有计算上难以处理的似然函数的模型被广泛应用于描述自然科学、社会科学和工程学中的复杂系统。将这些模型拟合到数据需要无似然推理方法,这些方法在不进行显式似然评估的情况下探索参数空间,而是依赖于序列模拟,这以计算效率和大量调优为代价。我们开发了一个名为核自适应合成后验估计(KASPE)的替代框架,该框架利用深度学习直接重构观测数据与后验分布的有限维参数化表示之间的映射,并在大量模拟数据集上进行训练。我们为KASPE提供了理论依据,并建立了其与基于似然的期望传播方法的正式联系。仿真实验展示了KASPE相对于现有无似然方法(包括近似贝叶斯计算)在具有挑战性的推理场景中的灵活性和性能,这些场景涉及具有重尾、多局部模态的后验分布以及非线性动力系统的参数。

0
下载
关闭预览

相关内容

【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NAACL2021】信息解缠正则化持续学习的文本分类
专知会员服务
22+阅读 · 2021年4月11日
【NeurIPS2020】可处理的反事实推理的深度结构因果模型
专知会员服务
49+阅读 · 2020年9月28日
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月16日
VIP会员
相关资讯
【ICML2021】因果匹配领域泛化
专知
12+阅读 · 2021年8月12日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
17+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员