We study optimal service pricing in server farms where customers arrive according to a renewal process and have independent and identical ($i.i.d.$) exponential service times and $i.i.d.$ valuations of the service. The service provider charges a time varying service fee aiming at maximizing its revenue rate. The customers that find free servers and service fees lesser than their valuation join for the service else they leave without waiting. We consider both finite server and infinite server farms. We solve the optimal pricing problems using the framework of Markov decision problems. We show that the optimal prices depend on the number of free servers. We propose algorithms to compute the optimal prices. We also establish several properties of the optimal prices and the corresponding revenue rates in the case of Poisson customer arrivals. We illustrate all our findings via numerical results.
翻译:我们研究服务器农场的最佳服务定价,在这些农场里,客户根据更新程序到达,并拥有独立和相同的(一.d.美元)指数服务时间和服务价值。服务供应商收取时间不等的服务费,目的是最大限度地提高收入率。发现免费服务器和服务费低于其估值的客户可以不等待就离开服务。我们考虑有限的服务器和无限服务器农场。我们利用Markov决定问题的框架解决最佳定价问题。我们表明,最佳价格取决于自由服务器的数量。我们提出计算最佳价格的算法。我们还为Poisson客户到达后,建立一些最佳价格和相应收入率的属性。我们通过数字结果来说明我们的所有发现。