项目名称: 超疏水表面抑霜机理分析及壁面特性对抑霜效果影响的研究

项目编号: No.51206179

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 工程热物理与能源利用学科

项目作者: 崔静

作者单位: 中国民航大学

项目金额: 25万元

中文摘要: 积冰结霜现象会严重影响飞机的正常飞行,相比于目前常用的除霜手段,抑制霜层的形成和生长可以从根本上消除结霜现象所带来的危害。实验研究表明超疏水壁面具有较好的抑霜性能。本项目从霜层产生和生长的机理入手,以相平衡理论和传热传质理论为基础,研究抑霜的原理,从而分析超疏水壁面具有抑霜性能的本质。基于数值模拟和实验研究交替的思路,本项目拟研究超疏水表面的壁面特性对霜层的形成与生长过程的影响,首先采用格子Boltzmann方法数值研究冰晶在具有不同材料浸润性、不同表面结构以及不同微观粗糙度的超疏水壁面上生长的过程;在数值预研的基础上,针对性的设计加工超疏水壁面,依托低温同步观测平台,深入研究超疏水壁面的抑霜性能,总结壁面特性对抑霜效果的影响规律,为超疏水壁面在抑霜领域的加工设计提供理论指导。

中文关键词: 超疏水表面;抑冰;高纯铜精炼;微纳结构;格子Boltzmann方法

英文摘要: Frost growth or ice accretion widely exists in the field of aerospace engineering, however, this phenomenon will worsen the operating characteristics of equipments and even cause the aircraft crash. Therefore, it has great implications to study the mechanism and method of the frost restrain in order to alleviate or even prevent the frost formation and eventually eliminate the negative effects of frost. The bionics studies suggested the super-hydrophobic surface can satisfy the abovementioned purposes. In this project, the mechanism of frost restrain by using super-hydrophobic surface will be revealed based on the phase equilibrium theory as well as heat and mass transfer principle primarily. Moreover, the Lattice Boltzmann Method (LBM), a numerical approach on the mesoscopic level, will be employed to investigate the frost growth on the different super-hydrophobic surfaces. An improved enthalpy method-based LBM model proposed by applicant will be expanded into a three dimensional one and be used to study the effects of the wetting characteristics, surface structures and micro-roughness on frost growth. Besides, according to numerical results, the super-hydrophobic surfaces, which possess the desirable anti-frosting performance theoretically, will be designed and machined. And the experimental researches will be

英文关键词: Surface-hydrophobic surface;Frost restrain;5N ultrahigh purity copper;micro-nano structure;Lattice Boltzmann method

成为VIP会员查看完整内容
0

相关内容

深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
26+阅读 · 2021年12月18日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
33+阅读 · 2021年6月18日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
29+阅读 · 2020年8月8日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
对比,还原真实的GPU池化
CSDN
1+阅读 · 2022年4月13日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
AAAI'21 | 对比自监督的图分类
图与推荐
8+阅读 · 2021年10月28日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
19+阅读 · 2020年7月21日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
小贴士
相关主题
相关VIP内容
深度神经网络FPGA设计进展、实现与展望
专知会员服务
35+阅读 · 2022年3月21日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
26+阅读 · 2021年12月18日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
37+阅读 · 2021年7月17日
专知会员服务
33+阅读 · 2021年6月18日
专知会员服务
45+阅读 · 2021年5月24日
专知会员服务
29+阅读 · 2020年8月8日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
76+阅读 · 2020年6月8日
【高能所】如何做好⼀份学术报告& 简单介绍LaTeX 的使用
相关资讯
对比,还原真实的GPU池化
CSDN
1+阅读 · 2022年4月13日
NTD的深度研究,为厘清新冠病毒机理提供新方向!
微软研究院AI头条
0+阅读 · 2021年11月23日
AAAI'21 | 对比自监督的图分类
图与推荐
8+阅读 · 2021年10月28日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
网络舆情分析
计算机与网络安全
20+阅读 · 2018年10月18日
干货|全景视频拼接的关键技术分析
全球人工智能
13+阅读 · 2017年7月15日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员