项目名称: 基于量子干涉囚禁离子的基态冷却与冷却极限的高阶修正研究
项目编号: No.61505014
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 半导体科学、光学和光电子学
项目作者: 伊珍
作者单位: 长江大学
项目金额: 20万元
中文摘要: 囚禁离子的基态冷却是实现量子计算、量子信息等方面的一个关键步骤。经过近几十年的发展,囚禁单离子的基态冷却依然是非常具有活力的研究课题。我们拟从以下三方面展开研究:(1)基于量子干涉效应实现囚禁离子冷却方案,采用另一类量子干涉效应—双色电磁诱导透明来研究囚禁离子基态冷却的新方案;(2)目前针对囚禁离子冷却极限关于Lamb-Dicke参数的高阶修正研究还比较少,以理论上“零温”冷却模型(加热系数关于Lamb-Dicke参数二次幂项为零)为研究对象求解冷却极限关于Lamb-Dicke参数的高阶修正,探讨更精确的冷却极限;(3)结合已有的关于Lamb-Dicke区域外囚禁离子在量子信息应用方面的研究,探讨Lamb-Dicke区域外囚禁离子的冷却过程,以及Lamb-Dicke参数和量子干涉对冷却极限的影响。我们的课题能够丰富囚禁离子冷却理论方面的研究,为冷原子的应用和发展提供一定的理论基础。
中文关键词: 量子干涉;双色电磁诱导透明;冷却极限高阶修正;Lamb-Dicke区域外
英文摘要: Realization of the trapped ions within the quantum ground state is the key ingredient in the emerging fields such as quantum computation, quantum information processing (QIP), etc. Cooling of the single trapped ion has developed for decades and it is still a hot and promising research topic at present. We intend to perform our research from three aspects:(1) Based on the scheme of the cooling of the trapped ion beyond resolved-sideband limit by using the quantum interference, we will investigate a new efficient cooling scheme by applying another type of quantum interference—bichromatic electromagnetically induced transparency (EIT);(2) By now the researches about the higher-order corrections on cooling limit of trapped ion are not sufficient, and we will calculate the higher-order corrections of cooling limit on Lamb-Dicke (LD) parameters based on the theoretical zero-temperature cooling model, where the heating rate of the second-order LD parameter is zero;(3) Inspired by applications of trapped ion beyond LD limit in QIP, we will study the cooling of trapped ion beyond LD limit, and the influence of LD parameter and quantum interference effects on cooling limit. Our investigations can enrich the study of cooling of trapped ion, and provide some theoretical foundations for the applications and developments of cold atoms.
英文关键词: quantum interference;bichromatic electromagnetically induced transparency (EIT);higher-order corrections on cooling limit;beyond the Lamb-Dicke limit