项目名称: 复合型移动群智感知关键技术研究
项目编号: No.61702017
项目类型: 青年科学基金项目
立项/批准年度: 2018
项目学科: 计算机科学学科
项目作者: 王江涛
作者单位: 北京大学
项目金额: 8万元
中文摘要: 近年来,随着集感知、计算和通信能力为一体的智能手机数量快速增长,一种被称为“移动群智感知”的新型感知模式应运而生。在该模式下,大量智能手机用户通过移动互联网协作完成智慧城市中的感知任务。已有移动群智感知研究工作所关注的感知任务往往只需要一方面的感知数据(本项目称之为“原子型任务”),而缺乏对涉及多方面感知数据的复合型任务的探究。作为原子型任务的有益、重要补充,复合型任务能够感知、理解更为复杂的现象,从而扩展城市感知能力、提升感知深度。本项目在分析复合型任务特征及衍生技术挑战的基础上,凝练此类任务在感知质量度量、任务分配和数据融合三方面的研究子问题,研究以下关键技术:(1)复合型移动群智感知质量度量模型;(2)复合型移动群智感知最优任务分配方法;(3)复合型移动群智感知结果融合推理方法。本项目预期形成复合型移动群智感知的整体关键技术框架,为相关应用系统的设计和分析提供支撑。
中文关键词: 移动群智感知;复合型任务;协同计算
英文摘要: In recent years, with the increasing number of smartphones with sensing, computing and communication capabilities, a novel sensing paradigm called Mobile Crowd Sensing (MCS) emerges, where mobile users collaboratively complete sensing tasks in smart cities through mobile Internet. The state-of-the-art research works in MCS mainly focus on sensing tasks requiring a single type of sensor, but fail to explore composite MCS tasks where the required sensing data is obtained through multiple sensors. As a useful and important supplement to the atomic task, the composite task can sense and understand more complex phenomena, thereby extending the city's sensing capability and enhancing the depth of perception. In this project, based on the analysis of composite tasks’ characteristics and corresponding technical challenges, we intend to address the following three research issues: (1) Data quality metrics for composite MCS; (2) Task allocation optimization for composite MCS; (3) Sensing data aggregation and inference for composite MCS. This project aims to develop theories and key techniques for composite MCS, laying solid foundation for the design and analysis of relevant applications and systems.
英文关键词: Mobile Crowd Sensing;Composite Task;Cooperative Computing