项目名称: 负自旋轨道耦合拓扑绝缘体的第一性原理研究

项目编号: No.11504013

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 胜献雷

作者单位: 北京航空航天大学

项目金额: 20万元

中文摘要: 拓扑绝缘体是一类具有拓扑非平庸性质的新型量子物质态,其内部绝缘,但存在无能隙的狄拉克型的表面金属态。自旋轨道耦合对拓扑非平庸的电子结构有着重要的影响。考虑负自旋轨道耦合以后,拓扑绝缘体将表现出许多新奇的物理性质。本项目的研究目标是:(1)寻找和设计一系列负自旋轨道耦合的拓扑绝缘体材料。目前为止,人们发现的拓扑绝缘体材料的自旋轨道耦合都是正的,本项目将预言一类全新的自旋轨道耦合为负的拓扑绝缘体材料,从而大大拓展拓扑绝缘体的材料种类。(2)调节自旋轨道耦合的强度和符号,以设计和优化拓扑材料的电子结构,从而寻找新的拓扑量子态。同时研究把不同自旋轨道耦合的拓扑材料做成异质结,以观察更多新奇有趣的物理现象。(3)发展一套计算拓扑不变量的程序,并实现在第一性原理程序中的嵌入。基于这套程序我们将来可以向非平衡输运和强关联材料计算方面做进一步的发展。

中文关键词: 拓扑绝缘体;拓扑半金属;负自旋轨道耦合;电子结构;第一性原理计算

英文摘要: Topological insulator (TI) is a novel quantum material state characterized by the non-trivial topological order. It behaves as an insulator in the bulk, while possesses a gapless Dirac-type metallic surface state. The spin-orbit coupling (SOC) plays important roles in generating topologically nontrivial band structure. Topological insulator would exhibit many interesting properties after considering negative SOC. The objectives of the project include three points. (1) We will search or design a family of TI with negative SOC and investigating their novel topological quantum state. So far, the SOC of most TI materials are positive. This project will greatly expend the scope of TI materials. (2) We will Search for novel topological quantum state and interesting electronic properties by tuning the strength and sign of SOC. We also study heterostructures of TI with different SOC, to search for more fascinating quantum phenomena. (3) We will develop a set of codes to calculate the topological invariants, and combine the code with first-principles software. Based on this program, we can do further studies including non-equilibrium transport and strongly correlated calculations in the future.

英文关键词: Topological insulator;Topological semimetal;Negative spin-orbit coupling;Electronic structure;First-Principles calculation

成为VIP会员查看完整内容
0

相关内容

专知会员服务
104+阅读 · 2021年8月23日
【2021新书】线性与矩阵代数导论,492页pdf阐述
专知会员服务
99+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
200+阅读 · 2020年9月1日
华为的成功,靠的竟是“一桶浆糊”?
创业邦杂志
0+阅读 · 2022年4月15日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Deep Face Recognition: A Survey
Arxiv
18+阅读 · 2019年2月12日
Arxiv
10+阅读 · 2018年2月17日
小贴士
相关VIP内容
专知会员服务
104+阅读 · 2021年8月23日
【2021新书】线性与矩阵代数导论,492页pdf阐述
专知会员服务
99+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
最新《非凸优化理论》进展书册,79页pdf
专知会员服务
108+阅读 · 2020年12月18日
专知会员服务
200+阅读 · 2020年9月1日
相关资讯
华为的成功,靠的竟是“一桶浆糊”?
创业邦杂志
0+阅读 · 2022年4月15日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
IBM推出127量子比特处理器,超越谷歌和中科大
量子位
0+阅读 · 2021年11月17日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
微信扫码咨询专知VIP会员