项目名称: 基于超薄层状二硫化锡的宏量制备及其高性能场效应晶体管和CMOS逻辑器件的研制
项目编号: No.61306137
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 无线电电子学、电信技术
项目作者: 宋海胜
作者单位: 华中科技大学
项目金额: 25万元
中文摘要: 超薄层状金属硫属化物晶体材料因超薄、迁移率高、具有天然的能带带隙且带隙可调等特性在下一代高集成度、高效纳电子器件中具有广阔的应用前景。高性能场效应晶体管及其集成的CMOS逻辑门器件是二维半导体电子器件最典型的应用基础。本项目拟利用无水联氨对于金属硫属化物的溶解特性与目前层状半导体多为硫属化物这一契合共性开发结合溶液法和CVD法协同优势的联氨溶液法,大尺度高质量合成SnS2基超薄层状材料。在目前背栅型场效应晶体管基础上,研究新型高介电材料顶栅型和悬浮型SnS2场效应晶体管器件,依据室温、低温变温晶体管性能表现结合第一性原理计算,揭示其载流子输运和散射机制,提升器件性能。集成单立的n型SnS2晶体管和p型GaSe、SnS晶体管组成互补型的CMOS逻辑门器件,实现典型的非门、或非门和与非门功能。本项目的实施,将为新电子材料的应用提供实验基础和器件原型,具有重要的学术和应用价值。
中文关键词: 宏量制备;二维半导体材料;场效应晶体管;逻辑器件;传输机理
英文摘要: Ultra-thin layered metal chalcogenides occupy large potential applications in next generation high integration and high performance nanoelectronics due to their special geometry and superior electrical properties such as ultra-thin thickness, high mobility, natural bandgap, tuned bandgap and so on. The high performance field-effect transistors (FETs) and their integrated CMOS logic gates are the most typical applications for two-dimensional semiconductors. The present proposed program utilize the meeting characters between the hydrazine dissolving capability to chalcogenide and the target layered chalcogenides to develop a new hydrazine solution method. The new method combines the synergy advantages from solution method and CVD method to synthesize large-scale and high quality SnS2 based layered materials. In addition to the reported low performance back-gated SnS2 FETs,we will fabricate and study new high k top-gated FETs and suspending FETs. According to the room and low temperature measurements combining with first-principle calculations,the carrier scattering and transport mechanism will be probed in order to improve the device performances. Futher the CMOS logic gates based on n-SnS2/p-GaSe and n-SnS/p-SnS will be integrated. The typical NOT,NAND,NOR gates will be implemented. The present proposed program
英文关键词: large-scale synthesis;two-dimensional semiconductor materials;field-effect transistors;logic gate devices;carrier transport mechanism