项目名称: 阵列波导光栅应用于微型拉曼光谱仪分光芯片的研究

项目编号: No.11304259

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 数理科学和化学

项目作者: 许英朝

作者单位: 厦门理工学院

项目金额: 30万元

中文摘要: 厦门大学田中群教授2010年在Nature发表的壳层隔绝纳米粒子增强拉曼(SHINERS)技术能够同时实现多种化学成分的高灵敏度检测,在食品安全领域具有独特的优势,但目前昂贵、笨重的拉曼光谱仪器严重阻碍了其应用范围的进一步扩大。利用阵列波导光栅(AWG)的原理研制色散芯片取代原来的光栅、透镜组成的光学系统,将会使拉曼光谱仪器的体积和价格下降一个数量级以上,在检测仪器和方法方面,将对缓解我国目前严峻的食品安全形势具有重大意义。本课题针对微型拉曼光谱仪对阵列波导光栅的技术要求,即宽工作波长范围和低损耗的要求,创新性地提出了采用级联技术展宽波长范围,采用高衍射级次,等曲率阵列波导结构降低插入损耗的方法,针对性地开展理论建模、仿真优化和工艺研制研究,最终在理论上获得拉曼光谱仪专用的AWG色散芯片的设计理论和优化算法,在应用上结合SHINERS技术,研制出微型拉曼光谱仪迫切需求的新型分光芯。

中文关键词: 阵列波导光栅;分光芯片;插入损耗;位相误差;宽带宽

英文摘要: Using the new developed shell-isolated nanoparticle-enhanced Raman spectroscopy (SHINERS) technology (Z. Tian, Nature, 2010, 464, 18, p392), different chemicals can be identified simultaneously with high sensitivity in a few seconds. Accordingly, SHINERS is believed to be a strong detection tool in the area of food safety. However, it is hard to expand its scope of applications due to nowadays expensive, bulky Raman spectrometer. In this proposal, An novel arrayed waveguide grating (AWG) dispersive chip is proposed to replace the traditional gratings and lenses optical system, and to reduce the volume and price of a Raman spectrometer to more than one order of magnitude. Micro Raman spectrometer based on this chip and SHINERS technology will promote the detection ability of harmful chemicals in food significantly in an affordable and portable way. Through the analysis of the technical requirements of micro Raman spectrometer on AWG dispersive chip, a novel AWG design is proposed. Here a cascade AWGs structure is used to realize a broad wavelength range, and each AWG in this cascade structure has high diffraction orders waveguide array with equivalent curvature to reduce the insertion loss. Theoretically model, simulation optimization and fabrication process of this novel AWG chip will be developed in this projec

英文关键词: arrayed waveguide grating;spectral chip;insertion loss;phase error;broad bandwidth

成为VIP会员查看完整内容
0

相关内容

数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
快速卷积算法的综述研究
专知会员服务
26+阅读 · 2021年10月25日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
51+阅读 · 2021年4月4日
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
69+阅读 · 2020年11月30日
专知会员服务
31+阅读 · 2020年10月13日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
迎接元宇宙,驭光科技推出AR光波导新产品
机器之心
0+阅读 · 2022年4月11日
电子烟,脱去“糖衣”
创业邦杂志
0+阅读 · 2022年3月14日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
45+阅读 · 2019年12月20日
小贴士
相关VIP内容
数据价值释放与隐私保护计算应用研究报告,64页pdf
专知会员服务
39+阅读 · 2021年11月29日
快速卷积算法的综述研究
专知会员服务
26+阅读 · 2021年10月25日
专知会员服务
31+阅读 · 2021年7月26日
专知会员服务
37+阅读 · 2021年5月9日
专知会员服务
51+阅读 · 2021年4月4日
专知会员服务
84+阅读 · 2020年12月5日
专知会员服务
69+阅读 · 2020年11月30日
专知会员服务
31+阅读 · 2020年10月13日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员