项目名称: 双连续复合结构半中空石墨烯卷包覆钒氧化物纳米线器件组装、储锂性能与机理

项目编号: No.51302203

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 一般工业技术

项目作者: 韩春华

作者单位: 武汉理工大学

项目金额: 25万元

中文摘要: 开发基于双连续复合结构半中空石墨烯包覆纳米线材料的高性能、复合化、低成本、绿色化的锂离子电池是新能源技术和纳米技术的交叉和前沿。本项目拟基于双连续导电网络设计,结合模板法、湿化学法、静电纺丝法等制备石墨烯/钒氧化物纳米线,并以此组装单根纳米线器件和锂离子电池。表征复合结构纳米线的物相、形貌、界面结构、包覆方式、光谱特征等,原位测试复合结构纳米线的电输运与本征电化学性能。研究材料结构、长度、径宽、表面氧原子缺陷、pH值等因素与锂离子扩散、电子传输、极化、充放电、循环可逆性等的相互关系,揭示反应过程中化学键畸变、电子分布变化与电子输运效率、锂离子电池容量的内在联系。通过材料的可控生长、复合构筑、均匀包覆、性能调控等提高纳米线的脱嵌锂性能,并采用遗传算法对结果进行优化,为新型复合纳米线锂离子电池正极材料的探索与开发奠定科学基础。

中文关键词: 纳米线;钒氧化物;双连续导电网络;原位表征;储锂机理

英文摘要: Lithium-ion batteries based on semi-hollow graphene nanoscroll coated vanadium oxide nanowires with bi-continuous hybrid structure with high performance, integration, low cost and free-pollution is advanced and crossed area of new-energy technique and nanotechnology. This proposal focuses on the design of bi-continuous conducting network and preparation of graphene/vanadium oxide nanowires by template method, wet chemistry method, electrochemical method and so on, which can be used for the assembly of single nanowire device and the cathode materials of lithium-ion battery. The characterization of the products, such as phase, morphology, interfacial structure, coated method, spectral feature will be conducted. Further the relationship between the material structure, length, diameter, surface oxygen atom defects pH value and Li ion distribution, electron transport, electrochemical polarization, charge/discharge, cycling reversibility will be investigated. Consequently, the intrinsic relationship between chemical bond distortion, electron distribution changes and electron transport efficiency during the reaction process will be revealed. To improve the intercalation/disintercalation process, the approaches will be adopted by controlled synthesis of material, composite construction, even coated construction , perfor

英文关键词: Nanowire;vanadium oxide;bi-continuous conducting network;in situ characterization;lithium storage mechanism

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年8月19日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
57+阅读 · 2022年1月5日
Max-Margin Contrastive Learning
Arxiv
18+阅读 · 2021年12月21日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
19+阅读 · 2020年7月21日
Arxiv
12+阅读 · 2019年4月9日
小贴士
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
13+阅读 · 2022年3月23日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
34+阅读 · 2021年8月19日
专知会员服务
12+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
109+阅读 · 2021年4月7日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员