项目名称: 高密度动态人群场景的多源图像融合研究

项目编号: No.61271370

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 鲍泓

作者单位: 北京联合大学

项目金额: 80万元

中文摘要: 本项目主要研究多光谱、多视角图像的特征融合问题。在该研究基础上,对高密度场景的人群实现自动、实时的密度估计及流量分析。主要内容包括:1)针对多源图像成像特性,基于数据挖掘的属性相关性分析来构建高密度人群场景特征向量的研究。2)基于纹理特征和半监督学习算法的人群密度估计研究。3)基于多源图像融合构建的高密度人群特征向量,提出运动群体分割算法。创新点:首先,提出基于不同粒度级别的多源图像融合算法;其次,基于半监督学习优化特征向量,提出准确、快速的运动人群分割算法。本项目的研究目标是对旅游景区、路口、广场、会展和商业中心和地铁等人群聚集的公共场所进行有效、实时人群密度精准估计和流量分析,从而实现人群的实现自动监控、自动报警。除此之外,该项研究成果对图像融合和运动群体的跟踪,具有非常重要的学术价值和社会价值。

中文关键词: 多光谱特征融合;相关性分析;半监督机器学习;人群流量分析;人群密度估计

英文摘要: The management and surveillance of people at certain public places become an important issue with serious consequences of human safety. Real-time monitoring, estimation and control of crowd appear to be essential. In recent years, a common weakness of surveillance systems is their inability to handle high crowded scenes. As the density of people in the scene increases, a significant degradation in the performance in terms of object detection, tracking, and event detection, is usually observed. This inability to deal with crowded scenes represents a significant problem given that many public areas are commonly densely populated. Based on the analysis mentioned above, in this project, we use the visual image and infrared image as the source images, thus more details of the scenes can be preserved. The research content includes crowd density evaluation and crowd flow analysis: 1) based on the correlation analysis theory of the data mining, feature vector of the high density scene can be constructed, which can be served as input value for regression algorithms. 2) In order to reduce the complexity the algorithm, graph-based semi-supervision learning and a Single hidden Layer Feed forward neural Networks would be introduced in our projects. 3)based on the multi-source image fusion feature vector of high-density popul

英文关键词: Multi-spectral feature fusion;Correlation analysis;Semi-supervised machine learning;Crowd flow analysis;Crowd density estimate

成为VIP会员查看完整内容
0

相关内容

「计算机视觉」2022 年 5 大趋势
专知会员服务
74+阅读 · 2022年3月27日
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
46+阅读 · 2021年10月1日
专知会员服务
21+阅读 · 2021年5月1日
专知会员服务
73+阅读 · 2021年4月8日
专知会员服务
44+阅读 · 2020年12月8日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
 图像内容自动描述技术综述
专知会员服务
87+阅读 · 2019年11月17日
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
最全综述 | 图像目标检测
计算机视觉life
31+阅读 · 2019年6月24日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
【深度】行人检测算法
GAN生成式对抗网络
29+阅读 · 2018年6月3日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
38+阅读 · 2020年12月2日
小贴士
相关VIP内容
「计算机视觉」2022 年 5 大趋势
专知会员服务
74+阅读 · 2022年3月27日
【博士论文】基于深度学习的单目场景深度估计方法研究
专知会员服务
46+阅读 · 2021年10月1日
专知会员服务
21+阅读 · 2021年5月1日
专知会员服务
73+阅读 · 2021年4月8日
专知会员服务
44+阅读 · 2020年12月8日
基于深度学习的表面缺陷检测方法综述
专知会员服务
94+阅读 · 2020年5月31日
 图像内容自动描述技术综述
专知会员服务
87+阅读 · 2019年11月17日
相关资讯
综述 | 激光与视觉融合SLAM
计算机视觉life
18+阅读 · 2020年10月8日
最全综述 | 图像目标检测
计算机视觉life
31+阅读 · 2019年6月24日
最全综述 | 医学图像处理
计算机视觉life
57+阅读 · 2019年6月15日
【深度】行人检测算法
GAN生成式对抗网络
29+阅读 · 2018年6月3日
基于深度学习的目标检测算法综述
AI研习社
14+阅读 · 2018年4月25日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员