项目名称: 低倍增电压InGaAs雪崩光电探测器研究

项目编号: No.61275113

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 无线电电子学、电信技术

项目作者: 张永刚

作者单位: 中国科学院上海微系统与信息技术研究所

项目金额: 75万元

中文摘要: 短波红外波段作为重要的大气窗口,包含了众多物质的特征吸收,为重要科学测量提供了特别多产的光谱区域。在此波段由于航天遥感和单光子探测等应用中信号极其微弱,具有比传统InGaAs PIN探测器更高灵敏度的InGaAs APD受关注。航天等应用需要阵列形式器件,并需与读出电路混合集成,常规APD器件由于其倍增电压高,如制成阵列器件其均匀性严重劣化,难以实际应用。本项目通过将能带递变量子结构倍增的思想应用到SAGCM型InGaAs APD倍增区设计中,结合分子束外延生长特殊方法的开发和器件芯片工艺的优化,重点研究、验证和揭示降低APD倍增电压与过剩噪声和暗电流的新思想及新材料结构,探索其与InGaAs APD关键性能的内在关联,开发出适合新结构InGaAs-APD材料的不间断生长和组分、界面精确控方法,研制出低倍增电压器件,为发展航天遥感及单光子探测应用领域的新型探测器提供科学依据和积累核心技术。

中文关键词: 雪崩光电探测器;铟镓砷;低倍增电压;化合物半导体;分子束外延

英文摘要: As an important atmosphere window, the short-wave infrared band covers numerous specific absorption features of substance, therefore forms a fruitful spectral region for significant scientific measurements and sensing. In this band, because of the very week signals in space or single photon detection applications, more attention have been aroused on the InGaAs APDs, which and more sensitive to the InGaAs PIN detectors. In space applications normally the array devices were needed, and the chips were hybridly integrated to readout circuits. The normal APD devices have much higher multiplication voltage, so the uniformity of array devices will become very poor, therefore unsuitable to real applications. In this project, the idea of band gap grading using quantum structure will be applied to the multiplication zone of SAGCM type InGaAs APDs; the specific MBE growth methods and chip processing steps will be developed. The new ideas and structures for the decrease of multiplication voltage of the APDs will be investigated and validated. Its relevancy to the device performance will be explored. The non-stop growth process, as well as precise composition and interface control methods, will be developed. InGaAs APD with lower multiplication voltage will be demonstrated. This project will be beneficial to the application

英文关键词: Avalanche photodetector;InGaAs;Low multiplication voltage;Compound semiconductor;Molucular beam epitaxy

成为VIP会员查看完整内容
0

相关内容

「图像异常检测 」最新2022研究综述
专知会员服务
88+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
14+阅读 · 2022年3月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
14+阅读 · 2019年11月26日
小贴士
相关VIP内容
「图像异常检测 」最新2022研究综述
专知会员服务
88+阅读 · 2022年4月15日
《5G/6G毫米波测试技术白皮书》未来移动通信论坛
专知会员服务
17+阅读 · 2022年4月15日
中国商用车电动化发展 研究报告,85页pdf
专知会员服务
14+阅读 · 2022年3月23日
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
57+阅读 · 2021年12月6日
专知会员服务
53+阅读 · 2021年10月1日
专知会员服务
43+阅读 · 2021年9月7日
专知会员服务
33+阅读 · 2021年5月7日
专知会员服务
26+阅读 · 2021年4月2日
相关资讯
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
准确率达 95%,机器学习预测复杂新材料合成
机器之心
1+阅读 · 2022年1月1日
小芯片大安全:数字隔离器的前世今生
中国科学院自动化研究所
0+阅读 · 2021年3月16日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
SAR成像原理及图像鉴赏
无人机
21+阅读 · 2017年8月14日
最大熵原理(一)
深度学习探索
12+阅读 · 2017年8月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员