项目名称: InGaAs失配体系材料的界面特性及缺陷形成机制研究

项目编号: No.61474053

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 无线电电子学、电信技术

项目作者: 郭作兴

作者单位: 吉林大学

项目金额: 87万元

中文摘要: 半导体材料是现代信息社会发展的重要基石,是半导体科学发展中非常活跃、极具生命力的部分,其中异质生长界面结构和缺陷是半导体研究领域的前沿课题。三元化合物InGaAs作为第二代半导体材料,以其优异的光学和电学性能,成为当今重要的光电子和电子器件的基础材料之一。本项目围绕高In组分异质生长材料的较大晶格失配问题,通过对失配状态下InGaAs外延生长中界面及缺陷的分析,阐述位错等各种不同缺陷的形成机制,明确缺陷在界面处、外延层中分布规律,验证界面晶格常数的弛豫与应力的可预测性和可控性;通过原位研究缺陷在外场作用下对材料光电性能的影响,建立界面及失配位错与材料性能之间的关系;对In与GaAs润湿性的研究,阐明In与GaAs的相互作用机理。最终,为获得高质量的异质外延生长材料提供理论依据和科学基础。

中文关键词: 半导体薄膜;失配体系;外延生长;界面结构;晶体缺陷

英文摘要: Semiconductor material is an important foundation of the development of the modern information society and a very active and vital part in development process of semiconductor science. Structure of the hetero-interface and defect are the frontier subject in the field of semiconductor research. As the second-generation semiconductor material, ternary compound: InGaAs has become one of the important elemental materials of optoelectronic and electronic devices based on its excellent optical and electrical properties. This item devoted in studying of larger lattice mismatch of high In component hetero-epitaxial material. By the analysis of the interface structure and defect in mismatched epitaxial InGaAs, the forming mechanism of dislocation and other various defects will be described, the distribution of defects in the interface and epitaxial layer will be clarified, the relaxation of interface lattice constant and the predictability and controllability of stress will be verified.By in situ observation the effects of defects on the photoelectric properties of materials under the external field will be studied, the relationship between the interface structure and the misfit dislocations and material properties will be established. Through the study of wettability of In and GaAs, the interaction mechanism of In and GaAs will be explained. Finally, this item will provide a theoretical basis and a scientific foundation for the growth of high quality hetero-epitaxial material.

英文关键词: semiconductor film;Mismatch system;epitaxial growth;interface structure;crystal defect

成为VIP会员查看完整内容
0

相关内容

《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
57+阅读 · 2021年2月12日
专知会员服务
182+阅读 · 2020年11月23日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
Android Studio 新特性详解
谷歌开发者
0+阅读 · 2022年1月19日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
28+阅读 · 2021年9月18日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关VIP内容
《华为云数据库在金融行业的创新与探索》华为26页PPT
专知会员服务
12+阅读 · 2022年3月23日
基于深度神经网络的图像缺损修复方法综述
专知会员服务
25+阅读 · 2021年12月18日
FPGA加速深度学习综述
专知会员服务
68+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
【经典书】模式识别导论,561页pdf
专知会员服务
81+阅读 · 2021年6月30日
专知会员服务
44+阅读 · 2021年5月24日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
57+阅读 · 2021年2月12日
专知会员服务
182+阅读 · 2020年11月23日
【ACM MM2020】跨模态分布匹配的半监督多模态情感识别
专知会员服务
42+阅读 · 2020年9月8日
相关资讯
Android Studio 新特性详解
谷歌开发者
0+阅读 · 2022年1月19日
你的哪类电子产品换新频率最高?
ZEALER订阅号
0+阅读 · 2022年1月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
【材料课堂】EBSD晶体学织构基础及数据处理
材料科学与工程
34+阅读 · 2018年7月14日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员