项目名称: 过渡金属碳化物负载的高效廉价燃料电池纳米电极材料的模拟与设计

项目编号: No.11474086

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 杨宗献

作者单位: 河南师范大学

项目金额: 80万元

中文摘要: Pt基催化剂被誉为万能催化剂,可用于CO氧化, CHx重整, 水煤气转化等重要反应,并用作清洁能源装置-质子交换膜燃料电池的电极催化剂(如Pt/碳黑)。然而Pt是价格奇贵的不可再生资源,在严苛的电化学反应环境中,Pt基催化剂还面临易溶解和CO中毒、稳定性差等科学难题,对Pt的过度依赖不仅限制了传统工业催化剂的使用,也限制了质子交换膜燃料电池的推广应用。人们期待开发出贵金属用量少、催化活性高、耐腐蚀的负载型电极催化剂以克服上面提到的难题。以过渡金属碳化物(TMC)为载体的负载型纳米体系,通过载体及其负载金属的优化设计有望达到这个目的。本课题旨在用基于密度泛函理论的从头算原子热力学方法和第一性原理分子动力学等方法,从原子层次和电子结构层面对TMC负载的过渡金属纳米体系(薄层、纳米核壳结构团簇、纳米线等)进行对比研究,设计并筛选出高效廉价、稳定性高的Pt基或非Pt燃料电池纳米电极催化剂。

中文关键词: 模拟设计;燃料电池;纳米电极材料;过渡金属碳化物;载体

英文摘要: Pt based catalysts are called all-purpose catalysts, which can be used to catalyze the reactions like CO oxidation, CHx renormalization, water-gas shift reaction, etc. Pt is also used as the electrode catalysts (e.g., Pt/C) of the proton exchange membrane fuel cell (PEMFC)-the clean energy device. However, Pt is the extremely expensive non-renewable resources. In the harsh environment of the electrochemical reactions, the catalyst faces scientific problems like easy dissolving in the solution, CO poisoning, and poor durability, etc. The over-dependence on Pt limits its application in the traditional industry and the application of PEMFC. It is expected to develop catalysts with less noble metal catalyst load, high actity and corrosion-resistant substrate to overcome the problems mentioned above. The nano-materials supported on transition metal carbide (TMC) would be a good solution. By using the ab initio atomistic thermodynamics method and the ab initio molecular dynamics method based on density functional theory, the current project aims to perform comparative studies on the transition metal nanosystems (thin films,core-shell nano-clusters, and nanowires, etc) supported on TMC from the atomic and electronic level, to screen and design high efficient, low cost and stable Pt based or non-Pt nano electrode catalysts.

英文关键词: simulation and design;fuelcells;nano electrode materials;transition metal carbides;support

成为VIP会员查看完整内容
0

相关内容

全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
22+阅读 · 2021年8月18日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
爷青回!可以拆电池的智能手机,要复活了?
ZEALER订阅号
0+阅读 · 2022年3月18日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
CVPR 2019 | PointConv:在点云上高效实现卷积操作
机器之心
10+阅读 · 2019年4月21日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关主题
相关VIP内容
全球能源转型及零碳发展白皮书
专知会员服务
39+阅读 · 2022年3月1日
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
19+阅读 · 2022年2月10日
专知会员服务
48+阅读 · 2021年10月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
22+阅读 · 2021年8月18日
专知会员服务
39+阅读 · 2021年5月12日
专知会员服务
31+阅读 · 2021年5月7日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员