项目名称: 以废旧锂离子电池为原料溶胶-凝胶-自蔓延燃烧法制备钴铁氧体磁性材料及其性能研究

项目编号: No.51304064

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 矿业工程

项目作者: 杨理

作者单位: 河南科技学院

项目金额: 25万元

中文摘要: 目前,限制废旧锂离子电池再资源化的核心问题是干法工艺简单,但是能耗较高,电解质溶液和电极中成分燃烧容易引起大气污染;湿法工艺流程长, 资源回收率低,能耗也较大。与传统回收技术干法和湿法相比,本项目拟采用溶胶-凝胶-自蔓延燃烧法处理废旧锂离子电池,制备出高品质钴铁氧体磁性材料,目的产物不再是简单的金属或化合物,而是一种附加值更高的技术产品----钴铁氧体。该项目重点研究溶胶-凝胶-自蔓延燃烧法合成钴铁氧体适宜的工艺条件,工艺路线和合成机理;通过化学掺杂,研究产品微观结构对产品磁性能的影响规律,进而揭示产品微观结构与磁性能的内在联系,为废旧锂离子电池再资源化提供新途径。

中文关键词: 废锂离子电池;溶胶-凝胶法;自蔓延燃烧法;钴铁氧体;掺杂

英文摘要: At present, the core problem of limiting spent Li-ion batteries recycling is that dry processes has the advantage of having simple and convenient operations, the disadvantages are consumption higher energy and being unable to recover organic compounds of electrolyte and electrode components so that they are easy to cause air pollution in combustion. Wet processes are considered to be a longer technology processes, lower resource reclaim rate and higher energy consumption. Compared with the traditional battery recycling technology,the authors will use a novel way to recycle spent Li-ion batteries by combining the chemical sol-gel method with the combustion method and the target products are not a single metal or its oxide but ferromagnetic cobalt ferrite materials with high value in this study. The project focuses on the study of the suitable process conditions, process route and synthesis mechanism in cobalt ferrite materials synthesized by combining the chemical sol-gel method with the combustion method. At the same time, the influence rule of product microstructure on product magnetic properties will also be studied by chemical doping, which futher reveals the internal links between microstructure and magnetic properties. The study provides a new way for spent Li-ion batteries recycling.

英文关键词: Spent lithium-ion batteries;Sol-gel method;Auto-combustion method;Cobalt ferrite;Doping

成为VIP会员查看完整内容
0

相关内容

【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
FPGA加速深度学习综述
专知会员服务
67+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
39+阅读 · 2021年7月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
51+阅读 · 2020年12月28日
全固态电池领域,小公司的加速度——恩力动力
创业邦杂志
0+阅读 · 2022年2月25日
台积电1万亿投资建厂!第二个2nm工厂,剑指1nm
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月22日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
17+阅读 · 2021年2月15日
Arxiv
22+阅读 · 2018年8月30日
小贴士
相关VIP内容
【AI与电力】电动汽车发展与城市电网适应性研究
专知会员服务
16+阅读 · 2022年4月25日
FPGA加速深度学习综述
专知会员服务
67+阅读 · 2021年11月13日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
21+阅读 · 2021年8月23日
专知会员服务
39+阅读 · 2021年7月10日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
24+阅读 · 2021年4月21日
专知会员服务
28+阅读 · 2021年2月26日
专知会员服务
51+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
相关论文
微信扫码咨询专知VIP会员