项目名称: 纳米铁磁线磁畴壁本征棘轮效应的研究
项目编号: No.11474183
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 朴红光
作者单位: 三峡大学
项目金额: 98万元
中文摘要: 2012年荷兰的Franken等人在Nature Nanotechnology上报道了一种利用磁畴壁棘轮效应的磁移位寄存器。它不仅可与美国IBM的Parkin提出的磁赛道存储器相媲美而且兼有磁逻辑功能,引起了人们的关注。这种垂直各向异性微铁磁环移位寄存器不仅功耗低、寿命长而且有精准的磁畴壁定位性能和单向输运功能,但仍存在操控速度慢、制备工艺要求高、存储密度低等不足之处,离应用相差甚远。通过我们前期的微磁学模拟工作,我们认识到利用磁畴壁内部自旋结构与磁畴壁动力学行为之间的内在关联也可以实现纳米铁磁线磁畴壁的棘轮效应。这种方案可有效保持磁畴壁的孤立子性质、简化其制备工艺、提高存储密度、缩短操控周期接近亚纳秒量级。本课题将采用理论结合实验的方法,研究磁畴壁的本征棘轮效应并揭示其物理机制,并争取设计出具有实际应用价值的磁畴壁棘轮效应功能器件。本课题不仅具有科学研究意义而且有很好的应用前景。
中文关键词: 自旋电子学;磁性纳米结构;磁畴壁动力学;微磁学模拟;磁性功能器件
英文摘要: The Netherlander J. H. Franken et al. reported a magnetic shift register based on ratchet effect of magnetic domain wall in Nature Nanotechnology in 2012. The proposed scheme has attracted much attention due to its possible application for magnetic racetrack memory proposed by S. Parkin, who is one of IBM fellows. In addition, the shift register can be functional with magnetic logic as well. It is considered that the magnetic shift register composed of ferromagnetic microring structures with the perpendicular anisotropy has many advantages, particularly such as low power consumption, longer device lifetime, high accuracy on nanometer scales, and unidirectional feature of magnetic domain wall propagation. However, the scheme has yet been realized unfortunately due to some drawbacks such as low operation speed and technical requirements for nano-fabrication. In our previous works based on micromagnetic simulations, we have discovered that the ratchet effect of magnetic domain wall, allowing the unidirectional propagation feature, can be achieved by an intrinsic correlation between the inner spin structure and dynamic behavior of magnetic domain wall. The discovered mechanism is found to effectively sustain soliton properties of the magnetic domain wall, to reduce the technical difficulty in manufacturing process, to increase the storage density, and to speed up the operational time on a sub-nanosecond timescale. The present project will adopts the theoretical approach combined with the experimental study of the intrinsic ratchet effect of magnetic domain wall, to reveal an underlying mechanism of the phenomenon and thus, to provide a fundamental understanding for disigning future functional devices based on the ratchet effect of magnetic domain wall. Through carrying out the proposed project, not only enhancing scientific knowledges, but also substantial contributions for practical applications in the field of spintronics are expected.
英文关键词: spintronics;magnetic nanostructure;magnetic domain wall dynamics;micromagnetic simulation;magnetic functional device