项目名称: 纳米工艺下低功耗通信芯片关键模块的随机计算设计方法研究

项目编号: No.61306043

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 无线电电子学、电信技术

项目作者: 陈赟

作者单位: 复旦大学

项目金额: 25万元

中文摘要: 纳米工艺下片上信号的非可靠性传输问题日趋严重,使通信芯片不能充分利用半导体工艺进步的好处。由于通信系统性能评价的统计特性,随机计算能利用冗余电路提高其芯片实现的可靠性,但其研究尚处在起步阶段。目前单纯从架构,算法或电路上已很难进一步降低通信芯片的功耗。本课题基于随机计算,借鉴通信理论来研究在低电压下有噪片上信道中数据的可靠传输,突破通信关键模块的算法-架构-电路的框架进行联合优化,提出通信基本单元的可分解性判据和最优分解方法,提出随机网络计算与采样信号表示技术的融合算法以及在分布式网络上的描述方法,得到随机计算下存储器冗余电路和架构的联合设计,并将以上的方法应用于通信芯片中功耗较大的关键模块中,如FFT和LDPC译码器。进而为更复杂的通信芯片提供低功耗解决方案。开展随机计算下通信芯片关键模块设计的研究将为通信系统大幅降低功耗提供重要途径,并加深对随机计算和纳米级数字信号处理内在机理的理解。

中文关键词: 低功耗;高吞吐率;LDPC译码器芯片;随机计算;

英文摘要: The issue of unreliable signal transmission on chips is becoming more and more severe under nanoscale process, which hinders the communication chips from taking full advantage of the process advancement. Due to the statistical feature of performance evaluation for communication systems, stochastic computations could increase the reliability by introducing the circuit redundancy. However, such research is still far from completion. Currently, it is considerably hard to further decrease the power consumption of communication chips from the architecture, algorithm, and circuit levels. Based on the stochastic computations, this project utilizes the communication theory to analyze the reliable on-chip signal transmission under noisy and low voltage environment. It could decompose the conventional architecture of algorithm, architecture, and circuit for joint optimization. This project proposes the criterion and optimum method for decomposition for basic communication blocks, and the fusion algorithm for stochastic computations and sampling signal representations as well as the description method for distributed networks. It jointly designs the redundant circuit and architecture for memory under stochastic computations, which could be further applied to the critical blocks with high power consumption in communication

英文关键词: low power;high throuput;LDPC decoder circuit;stochastic computation;

成为VIP会员查看完整内容
0

相关内容

《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
计算体系架构研究综述与思考
专知会员服务
62+阅读 · 2022年3月21日
华为:6G:无线通信新征程(附报告),30页pdf
专知会员服务
55+阅读 · 2022年2月28日
【博士论文】分形计算系统
专知会员服务
32+阅读 · 2021年12月9日
专知会员服务
18+阅读 · 2021年6月29日
专知会员服务
14+阅读 · 2021年3月26日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
73+阅读 · 2021年1月29日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
招聘平面设计实习生
微软研究院AI头条
0+阅读 · 2021年5月20日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月19日
Convex-Concave Min-Max Stackelberg Games
Arxiv
0+阅读 · 2022年4月19日
小贴士
相关VIP内容
《零功耗通信》未来移动通信论坛
专知会员服务
14+阅读 · 2022年4月15日
深度神经网络 FPGA 设计进展、实现与展望
专知会员服务
57+阅读 · 2022年3月26日
6G物理层AI关键技术白皮书(2022)
专知会员服务
40+阅读 · 2022年3月21日
计算体系架构研究综述与思考
专知会员服务
62+阅读 · 2022年3月21日
华为:6G:无线通信新征程(附报告),30页pdf
专知会员服务
55+阅读 · 2022年2月28日
【博士论文】分形计算系统
专知会员服务
32+阅读 · 2021年12月9日
专知会员服务
18+阅读 · 2021年6月29日
专知会员服务
14+阅读 · 2021年3月26日
【经典书】线性代数,Linear Algebra,525页pdf
专知会员服务
73+阅读 · 2021年1月29日
【博士论文】解耦合的类脑计算系统栈设计
专知会员服务
29+阅读 · 2020年12月14日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员