项目名称: 纳米结构Ta3N5基大面积无纺布光催化剂的设计、构筑及其在净化流动污水中的应用
项目编号: No.21477019
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 化学工业
项目作者: 张丽莎
作者单位: 东华大学
项目金额: 86万元
中文摘要: 光催化技术在处理污水方面已经展现了巨大潜力,但是其应用前提是开发优异的光催化剂。纳米光催化剂有较好性能,但是难以回收;衬底固定的光催化剂容易被回收,但是比表面积小或成本高。为了解决这些难题,本项目旨在开发高效稳定且易回收的宏观尺度纳米结构光催化剂,以Ta3N5为例制备纳米结构Ta3N5基大面积无纺布光催化剂,并将其用于净化流动污水。主要研究内容包括:(1)设计纳米结构Ta3N5基无纺布,再发展以静电纺丝为基础的方法来制备无纺布,探索其生长机理;(2)测试无纺布的光催化性能,探索其组分、形貌和织物结构等对其光催化活性的影响规律,筛选出高效稳定且易回收的无纺布光催化剂;(3) 以Ta3N5基无纺布为光催化剂滤膜,设计并构造可用于净化流动污水的多级光催化装置,探索装置级数、降解效率、处理成本等之间关系。该项目将为发展高效稳定和易回收的无纺布光催化剂奠定基础,也为光催化技术走向实用做出重要贡献。
中文关键词: Ta3N5基光催化剂;纳米结构;大面积无纺布;污水净化;应用
英文摘要: Photocatalytic technology has great potential in the application of the decontamination of the polluted water, and a prerequisite for photocatalytic application is to obtain excellent photocatalysts. Traditional nanosized photocatalysts usually have high photocatalytic activity but can not be efficiently recycled; and film-shaped photocatalysts on the substrate can be easily recycled, but they have low surface area and/or high production cost. To solve these problems, this project aims to develop efficient and easily recyclable macroscale photocatalysts with nanostructure: the case of nanostructured Ta3N5-based macroscale nonwoven-cloth photocatalyst for the decontamination of flowing sewage. This project consists of three steps. The first step is to design and prepare nanostructured Ta3N5-based macroscale nonwoven-cloth by an electrospinning based method. The second step is to measure the photocatalytic activity of the Ta3N5-based nonwoven-cloth, and to investigate the effects of compositions, morphologies, fabric structure and etc on the photocatalytic performance, and then to select efficient, stable and easily recyclable nonwoven-cloth photocatalysts. The last step is to design and construct novel multiple-stage photocatalytic devices with Ta3N5-based nonwoven-cloth as the photocatalyst-based filter-membrane for the purification of flowing sewage, and to investigate the relationships among stage number of photocatalytic devices, decontamination efficiency, and treatment cost. This project will not only lay a foundation for the future development of efficient, stable and easily recyclable nonwoven-cloth photocatalysts, but also make important contributions to the practical application of photocatalytic technology, for example, degrading pollutants in lake and/or river.
英文关键词: Ta3N5-based photocatalyst;Nanostructure;macroscale nonwoven cloth;purification of sewage;application