项目名称: 光子晶体中的量子纠缠动力学演化及其保护机理研究

项目编号: No.11204089

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 物理学I

项目作者: 刘景锋

作者单位: 华南农业大学

项目金额: 25万元

中文摘要: 量子纠缠是实现量子计算、量子通信及量子相干调控的核心资源,而环境作用引起的量子纠缠耗散是限制其应用的主要因素,所以通过研究量子纠缠动力学演化过程,找到引起纠缠耗散的原因,进而研究出减缓或控制纠缠耗散的机制尤为重要。光子晶体是一种全新的光学材料,它可以有效的调控量子系统的辐射及抑制量子系统的退相干。本项目将以光子晶体为平台,系统而深入的研究量子纠缠问题,突破马尔科夫近似和两个色散模型的理论框架,发展出一套普适的时间演化算符理论。基于这套理论,研究两量子系统在光子晶体环境中的纠缠动力学演化过程,发现引起纠缠耗散的原因,进而找到减缓或控制纠缠耗散的理论方法和实验方案;探索基于光子晶体为平台的纠缠保持的新机理和新方法;设计一种基于光子晶体薄板的量子受限结构,并利用此结构研究纠缠动态操控的机制。这些研究将利于我们更深入理解和拓宽利用量子纠缠,对未来量子信息的应用具有重要意义。

中文关键词: 光子晶体;自发辐射;相干保护;局域态密度;量子纠缠

英文摘要: Quantum entanglement is fundamental in quantum computation, quantum communication and quantum coherence engineering. However, quantum entanglement can be easily destroyed by the outer enviroment , which is the severest obstacle to application. So the effect of environment on quantum entanglement system becomes a central topic, the key of which is to eliminate or suppress the dissipation effect on the quantum entanglement system imposed by its surrounding environment. Photonic Crystals(PCs) can manipulate the spontaneous emission and restrain the decoherence of quantum system. In this project, we will systematically investigate the quantum entanglement based on photonic crystals platform and present a time evolution operator theory beyond Markovian approximation and two dispersion models. According to this theory, we will research the dynamic evolution process of two qubit quantum entanglement in PCs, and try to find out the theoretical methods and experimental scheme to control or suppress the disentanglement.Additionally, we will research noval approaches and new mechanism to preserve entanglement in PCs. Furthermore, we will design a quantum-confined photonic-crystal-slab structure for three-dimensional dynamic manipulation of quantum entanglement. Research results will reveal the profound nature of the enta

英文关键词: photonic crystal;spontaneous emission;coherence protection;local density of state;quantum entanglement

成为VIP会员查看完整内容
0

相关内容

全球自动驾驶战略与政策观察,36页pdf
专知会员服务
57+阅读 · 2022年2月8日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
44+阅读 · 2021年5月24日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
2021年全球量子信息发展报告, 32页pdf
专知
0+阅读 · 2021年5月14日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
26+阅读 · 2018年8月19日
小贴士
相关主题
相关VIP内容
全球自动驾驶战略与政策观察,36页pdf
专知会员服务
57+阅读 · 2022年2月8日
中国信通院:量子信息技术发展与应用研究报告
专知会员服务
42+阅读 · 2022年1月1日
专知会员服务
30+阅读 · 2021年10月12日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
44+阅读 · 2021年5月24日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
量子信息技术研究现状与未来
专知会员服务
40+阅读 · 2020年10月11日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
相关论文
Verified Compilation of Quantum Oracles
Arxiv
0+阅读 · 2022年4月20日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
Quantum Computing -- from NISQ to PISQ
Arxiv
1+阅读 · 2022年4月15日
Arxiv
39+阅读 · 2021年11月11日
Arxiv
126+阅读 · 2020年9月6日
Arxiv
16+阅读 · 2020年5月20日
Arxiv
26+阅读 · 2018年8月19日
微信扫码咨询专知VIP会员