项目名称: 快重离子辐照引起金属纳米颗粒形变的机理研究

项目编号: No.11475230

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 数理科学和化学

项目作者: 杨义涛

作者单位: 中国科学院近代物理研究所

项目金额: 108万元

中文摘要: 由于金属纳米颗粒的小尺寸效应、表面效应以及量子尺寸等效应,使得含有金属纳米颗粒的复合材料兼具了传统复合材料和纳米材料两者的优越性,在光电子器件及能源等领域都有着广泛的应用。但是采用传统制备方法引入的金属纳米颗粒是随机分布的球形颗粒,且无法对其分布的有序性和形状进行调控。在高能离子辐照的过程中,材料中瞬间高密度电子能量的沉积可以引起金属原子的定向迁移和重构,从而使得基体材料中球形的金属纳米颗粒沿离子入射的方向发生形变形成椭球状纳米颗粒或者纳米柱。这种各项异性金属纳米颗粒的引入,使得复合材料的光学及磁学性能呈现出了方向选择性,引起了人们极大的研究兴趣,现在已经发展成为一个热点研究领域。鉴于目前金属纳米颗粒形变的机理仍然处于探索阶段以及国内关于这方面的研究报道比较少见,我们拟借助兰州重离子加速器国家实验室的高能束流条件开展高能离子辐照引起金属纳米颗粒形变的机理研究。

中文关键词: 离子束辐照;快重离子;辐照损伤机理;纳米结构;金属纳米颗粒

英文摘要: Due to small-size effect, surface effect and quantum size effect from metallic nanoparticles, the composites embedded with metallic nanoparticles possess the advantages of traditional composites and nanomaterials, and have wide application in optical device and energy fields. However, the metallic nanopartices fabricated by traditional methods randomly distribute in the matrix, and the shape of these metallic nanoparticles is always spherical. During the irradiation with high energy, the deposition of electronic energy with high density can result in oriented migration and re-organization of metallic atoms, which can transform the metallic nanoparticles in matrix deform along the ion incident direction to prolate spheroids or nanorods. The composite contained anisotropic metallic nanoparticles also shows anisotropy for their optical and magnetic properties, which has attract much interest of researchers and has become to be a hot research field. Because the deformation mechanism of metallic nanoparticles under irradiation with swift heavy ions still remain unclear up to now, we plan to study the deformation of metallic nanoparticles under irradiation with swift heavy ion by using the irradiation facility in the national laboratory of heavy ion accelerator in Lanzhou.

英文关键词: ion irradiation;swift heavy ion;irradaition damage mechanism;nanostructure;metallic nanoparticle

成为VIP会员查看完整内容
0

相关内容

【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
MIT科学家制造了量子龙卷风
机器之心
0+阅读 · 2022年1月14日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
2+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
17+阅读 · 2022年1月11日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
小贴士
相关VIP内容
【哈佛大学】深度学习理论实证探究
专知会员服务
42+阅读 · 2021年11月1日
专知会员服务
41+阅读 · 2021年9月7日
专知会员服务
65+阅读 · 2021年7月4日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
25+阅读 · 2021年4月2日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
【IJCAJ 2020】多通道神经网络 Multi-Channel Graph Neural Networks
专知会员服务
25+阅读 · 2020年7月19日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员