项目名称: 单质硫、硼光催化材料表面反应活性的理论研究

项目编号: No.51472249

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 尹利长

作者单位: 中国科学院金属研究所

项目金额: 83万元

中文摘要: 硫和硼是具有宽谱可见光吸收的新型单质光催化材料,但是目前其光催化活性低,难以真正应用于太阳能转化。单质硫和硼晶体的表面通常是低表面能的惰性面,因此反应物分子在其表面吸附弱,使得光催化剂与反应物分子之间的电荷转移困难,这是导致单质光催化材料活性低的关键因素之一。以本课题组前期相关研究为基础,结合单质硫和硼的表面性质分析,本项目拟通过表面改性(异质原子表面修饰,或者与功能化石墨烯或氮化硼进行界面复合)提高单质硫和硼的表面能、诱导表面极化,增强反应物分子的表面吸附,促进光生载流子的分离和转移,在保持宽谱可见光吸收的前提下提高其光催化反应活性。拟采用第一性原理计算研究表面改性对硫和硼等单质光催化材料表面原子/电子结构的影响,探索表面改性调变表面能、诱导表面极化的规律,揭示表面改性提高光催化反应活性的微观机制,为发展具有优异可见光响应特性的高性能新型光催化材料提供理论指导和科学依据。

中文关键词: 单质光催化材料;表面改性;表面极化;表面反应活性;第一性原理计算

英文摘要: As a new class of wide visible-light-absorption elemental photocatalysts, alpha-sulfur and beta-boron are impractical for solar energy conversion due to their low photocatalytic activities. Normally, the exposed surfaces of elemental sulfur and boron are inert facets with extremely low surface energies, resulting in weak adsorption for the reactant molecules and difficult charge transfer between photocatalytsts and the reactant molecules, which is one of the key factors for the observed low photocatalytic activities in experiments. Considering the surface properties of elemental photocatalysts, we propose a novel approach to promote the photocatalytic activiy of elemental photocatalysts by surface modification (including heteroatom modification or interface composition with functionalized graphene or hexagonal boron nitride) based on our previous understanding, while keeping their intrinsic and highly efficient visible-light-absorption unchanged. Surface modification can induce surface polarization to increase the surface energy and the adsorption energy of reactant molecules, promoting the separation and transfer of the photo-excited carriers. By using the first-principles calculations, we intend to study the effects of surface modification on the atomic and electronic structures of elemental photocatalysts, aiming to explore the general rules of surface polarization and surface energy modulation induced by surface modification, and the mechanism of photocatalytic activity enhancement resulted from surface modification. This approach could help to design and develop high performance photocatalysts with efficient visible-light-response.

英文关键词: elemental photocatalyst;surface modification;surface polarization;surface reactivity;first principles calculation

成为VIP会员查看完整内容
0

相关内容

ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
35+阅读 · 2022年1月22日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Simple and Effective Unsupervised Speech Synthesis
Arxiv
2+阅读 · 2022年4月20日
The Importance of Credo in Multiagent Learning
Arxiv
1+阅读 · 2022年4月15日
小贴士
相关主题
相关VIP内容
ICLR 2022|化学反应感知的分子表示学习
专知会员服务
20+阅读 · 2022年2月10日
《人工智能在化学领域的应用全景》白皮书
专知会员服务
35+阅读 · 2022年1月22日
【AAAI2022】利用化学元素知识图谱进行分子对比学习
专知会员服务
27+阅读 · 2021年12月3日
专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
28+阅读 · 2021年8月27日
专知会员服务
86+阅读 · 2021年8月8日
专知会员服务
31+阅读 · 2021年5月7日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
机器学习在材料科学中的应用综述,21页pdf
专知会员服务
48+阅读 · 2019年9月24日
相关资讯
你会给手机带保护壳吗?
ZEALER订阅号
0+阅读 · 2021年10月11日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
39+阅读 · 2019年4月12日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员