项目名称: 二维六方氮化硼的可控制备及功能性研究

项目编号: No.51472117

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 一般工业技术

项目作者: 郭万林

作者单位: 南京航空航天大学

项目金额: 85万元

中文摘要: 高温、强电场、介质腐蚀等复杂环境下材料的轻质防护以及电子器件的稳定性是亟待解决的问题。二维六方氮化硼材料具备优良的热稳定性、抗腐蚀性、绝缘性以及出色的力学、热学等性质,可将材料的防护涂层推进到单原子厚的极限。此外,其纳米结构以及与石墨烯等其他二维材料的异质结构还具有丰富的电学性质,是应对上述问题的理想材料。本项目在我们掌握的大面积制备二维六方氮化硼技术和多尺度理论研究方法的基础上,发展高质量二维六方氮化硼的可控制备技术,深入开展复杂环境下氮化硼的热、化学、电等多功能防护性能研究,以及基于氮化硼纳米带和氮化硼/石墨烯异质结构的信息功能器件性能研究,并结合大规模计算模拟,揭示氮化硼晶界、边缘等缺陷态对上述性能的影响。旨在为发展新型、轻便、可靠的耐极端环境的防护方法和构建氮化硼基信息功能电子器件提供坚实的技术基础,做出在国际上有重要影响的原创性研究成果。

中文关键词: 纳米材料;可控制备;功能材料;纳米结构

英文摘要: Protection of materials without mass burden and the stability of electronic devices working under harsh environment, such as high temperature, strong electric field and corrosion, are big challenges to be resolved. Two-dimensional hexagonal boron nitride (2D h-BN) shows outstanding thermal stability, corrosion resistance, electric insulation, mechanical and thermal properties, thus can realize protective coating with only one atomic thickness.Besides, its nanosturctures and hetero-structure with other two dimensional materials hold various electric properties, making it a promising candidate for resolving these problems. Based on our ability on growing large area 2D h-BN and multi-scale theoretical study, this project will focus on: i) developing the technology of controllable growing 2D h-BN of high quality; ii) exploring its various protection performances against thermal, chemical, electrical, and other harsh environment; iii) studying the properties of information functioned devices based on h-BN nanoribbon and the h-BN/graphene hetero-structure; iv) revealing the influence of the defect states of grain boundaries and edges on the properties mentioned above. This project is aimed to provide technical basis for developing effective protective method against harsh environment and information functioned electronic devices based on h-BN, as well as reveal original scientific findings of high importance.

英文关键词: nanomaterial;controllable fabrication;functional material;nanostructure

成为VIP会员查看完整内容
0

相关内容

中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
150+阅读 · 2021年9月25日
专知会员服务
42+阅读 · 2021年9月7日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
51+阅读 · 2020年12月28日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
高分子材料领域的十大院士!
材料科学与工程
19+阅读 · 2018年9月18日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Age Optimal Sampling Under Unknown Delay Statistics
Arxiv
0+阅读 · 2022年4月20日
Arxiv
57+阅读 · 2022年1月5日
Arxiv
11+阅读 · 2021年3月25日
Generative Adversarial Networks: A Survey and Taxonomy
小贴士
相关VIP内容
中国AI+材料科学产业应用研究报告,41页pdf
专知会员服务
55+阅读 · 2021年12月6日
2021年中国量子计算应用市场研究报告
专知会员服务
37+阅读 · 2021年10月28日
专知会员服务
150+阅读 · 2021年9月25日
专知会员服务
42+阅读 · 2021年9月7日
2021年全球量子信息发展报告, 32页pdf
专知会员服务
78+阅读 · 2021年5月14日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
31+阅读 · 2021年2月17日
专知会员服务
51+阅读 · 2020年12月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员