超级大汇总!200多个最好的机器学习、NLP和Python教程

2018 年 9 月 25 日 大数据技术

来自:大数据文摘(微信号:BigDataDigest)

编译:瓜瓜、Aileen


这篇文章包含了我目前为止找到的最好的教程内容。这不是一张罗列了所有网上跟机器学习相关教程的清单——不然就太冗长太重复了。我这里并没有包括那些质量一般的内容。我的目标是把能找到的最好的教程与机器学习和自然语言处理的延伸主题们连接到一起。


我这里指的“教程”,是指那些为了简洁地传授一个概念而写的介绍性内容。我尽量避免了教科书里的章节,因为它们涵盖了更广的内容,或者是研究论文,通常对于传授概念来说并不是很有帮助。如果是那样的话,为何不直接买书呢?当你想要学习一个基本主题或者是想要获得更多观点的时候,教程往往很有用。


我把这篇文章分为了四个部分:机器学习,自然语言处理,python和数学。在每个部分中我都列举了一些主题,但是因为材料的数量庞大,我不可能涉及到每一个主题。


如果你发现到我遗漏了哪些好的教程,请告诉我!我尽量把每个主题下的教程控制在五个或者六个,如果超过了这个数字就难免会有重复。每一个链接都包含了与其他链接不同的材料,或使用了不同的方式表达信息(例如:使用代码,幻灯片和长文),或者是来自不同的角度。


机器学习


Start Here with Machine Learning (machinelearningmastery.com)

https://machinelearningmastery.com/start-here/


Machine Learning is Fun! (medium.com/@ageitgey)

https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471


Rules of Machine Learning: Best Practices for ML Engineering(martin.zinkevich.org)

http://martin.zinkevich.org/rules_of_ml/rules_of_ml.pdf


Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley)

https://ml.berkeley.edu/blog/2016/11/06/tutorial-1/

https://ml.berkeley.edu/blog/2016/12/24/tutorial-2/

https://ml.berkeley.edu/blog/2017/02/04/tutorial-3/


An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com)

https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer


A Gentle Guide to Machine Learning (monkeylearn.com)

https://monkeylearn.com/blog/gentle-guide-to-machine-learning/


Which machine learning algorithm should I use? (sas.com)

https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/


The Machine Learning Primer (sas.com)

https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/machine-learning-primer-108796.pdf


Machine Learning Tutorial for Beginners (kaggle.com/kanncaa1)

https://www.kaggle.com/kanncaa1/machine-learning-tutorial-for-beginners


激活和损失函数


Sigmoid neurons (neuralnetworksanddeeplearning.com)

http://neuralnetworksanddeeplearning.com/chap1.html#sigmoid_neurons


What is the role of the activation function in a neural network? (quora.com)

https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network


Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com)

https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons


Activation functions and it’s types-Which is better? (medium.com)

https://medium.com/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f


Making Sense of Logarithmic Loss (exegetic.biz)

http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/


Loss Functions (Stanford CS231n)

http://cs231n.github.io/neural-networks-2/#losses


L1 vs. L2 Loss function (rishy.github.io)

http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/


The cross-entropy cost function (neuralnetworksanddeeplearning.com)

http://neuralnetworksanddeeplearning.com/chap3.html#the_cross-entropy_cost_function


偏差


Role of Bias in Neural Networks (stackoverflow.com)

https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks/2499936#2499936


Bias Nodes in Neural Networks(makeyourownneuralnetwork.blogspot.com)

http://makeyourownneuralnetwork.blogspot.com/2016/06/bias-nodes-in-neural-networks.html


What is bias in artificial neural network? (quora.com)

https://www.quora.com/What-is-bias-in-artificial-neural-network


感知机


Perceptrons (neuralnetworksanddeeplearning.com)

http://neuralnetworksanddeeplearning.com/chap1.html#perceptrons


The Perception (natureofcode.com)

https://natureofcode.com/book/chapter-10-neural-networks/#chapter10_figure3


Single-layer Neural Networks (Perceptrons) (dcu.ie)

http://computing.dcu.ie/~humphrys/Notes/Neural/single.neural.html


From Perceptrons to Deep Networks (toptal.com)

https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks


回归


Introduction to linear regression analysis (duke.edu)

http://people.duke.edu/~rnau/regintro.htm


Linear Regression (ufldl.stanford.edu)

http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/


Linear Regression (readthedocs.io)

http://ml-cheatsheet.readthedocs.io/en/latest/linear_regression.html


Logistic Regression (readthedocs.io)

https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html


Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com)

http://machinelearningmastery.com/simple-linear-regression-tutorial-for-machine-learning/


Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com)

https://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/


Softmax Regression (ufldl.stanford.edu)

http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/


梯度下降


Learning with gradient descent (neuralnetworksanddeeplearning.com)

http://neuralnetworksanddeeplearning.com/chap1.html#learning_with_gradient_descent


Gradient Descent (iamtrask.github.io)

http://iamtrask.github.io/2015/07/27/python-network-part2/


How to understand Gradient Descent algorithm (kdnuggets.com)

http://www.kdnuggets.com/2017/04/simple-understand-gradient-descent-algorithm.html


An overview of gradient descent optimization algorithms(sebastianruder.com)

http://sebastianruder.com/optimizing-gradient-descent/


Optimization: Stochastic Gradient Descent (Stanford CS231n)

http://cs231n.github.io/optimization-1/


生成学习


Generative Learning Algorithms (Stanford CS229)

http://cs229.stanford.edu/notes/cs229-notes2.pdf


A practical explanation of a Naive Bayes classifier (monkeylearn.com)

https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/


支持向量机


An introduction to Support Vector Machines (SVM) (monkeylearn.com)

https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/


Support Vector Machines (Stanford CS229)

http://cs229.stanford.edu/notes/cs229-notes3.pdf


Linear classification: Support Vector Machine, Softmax (Stanford 231n)

http://cs231n.github.io/linear-classify/


深度学习


A Guide to Deep Learning by YN² (yerevann.com)

http://yerevann.com/a-guide-to-deep-learning/


Deep Learning Papers Reading Roadmap (github.com/floodsung)

https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap


Deep Learning in a Nutshell (nikhilbuduma.com)

http://nikhilbuduma.com/2014/12/29/deep-learning-in-a-nutshell/


A Tutorial on Deep Learning (Quoc V. Le)

http://ai.stanford.edu/~quocle/tutorial1.pdf


What is Deep Learning? (machinelearningmastery.com)

https://machinelearningmastery.com/what-is-deep-learning/


What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com)

https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/


Deep Learning — The Straight Dope (gluon.mxnet.io)

https://gluon.mxnet.io/


优化和降维


Seven Techniques for Data Dimensionality Reduction (knime.org)

https://www.knime.org/blog/seven-techniques-for-data-dimensionality-reduction


Principal components analysis (Stanford CS229)

http://cs229.stanford.edu/notes/cs229-notes10.pdf


Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012)

http://cs229.stanford.edu/notes/cs229-notes10.pdf


How to train your Deep Neural Network (rishy.github.io)

http://rishy.github.io/ml/2017/01/05/how-to-train-your-dnn/


长短期记忆(LSTM)


A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com)

https://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/


Understanding LSTM Networks (colah.github.io)

http://colah.github.io/posts/2015-08-Understanding-LSTMs/


Exploring LSTMs (echen.me)

http://blog.echen.me/2017/05/30/exploring-lstms/


Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io)

http://iamtrask.github.io/2015/11/15/anyone-can-code-lstm/


卷积神经网络


Introducing convolutional networks (neuralnetworksanddeeplearning.com)

http://neuralnetworksanddeeplearning.com/chap6.html#introducing_convolutional_networks


Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey)

https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721


Conv Nets: A Modular Perspective (colah.github.io)

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/


Understanding Convolutions (colah.github.io)

http://colah.github.io/posts/2014-07-Understanding-Convolutions/


递归神经网络


Recurrent Neural Networks Tutorial (wildml.com)

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/


Attention and Augmented Recurrent Neural Networks (distill.pub)

http://distill.pub/2016/augmented-rnns/


The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io)

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com)

http://nikhilbuduma.com/2015/01/11/a-deep-dive-into-recurrent-neural-networks/


强化学习


Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com)

https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/


A Tutorial for Reinforcement Learning (mst.edu)

https://web.mst.edu/~gosavia/tutorial.pdf


Learning Reinforcement Learning (wildml.com)

http://www.wildml.com/2016/10/learning-reinforcement-learning/


Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io)

http://karpathy.github.io/2016/05/31/rl/


生成对抗网络(GANs)


Adversarial Machine Learning (aaai18adversarial.github.io)

https://aaai18adversarial.github.io/slides/AML.pptx


What’s a Generative Adversarial Network? (nvidia.com)

https://blogs.nvidia.com/blog/2017/05/17/generative-adversarial-network/


Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey)

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7


An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com)

http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/


Generative Adversarial Networks for Beginners (oreilly.com)

https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners


多任务学习


An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com)

http://sebastianruder.com/multi-task/index.html


自然语言处理


Natural Language Processing is Fun! (medium.com/@ageitgey)

https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e


A Primer on Neural Network Models for Natural Language Processing(Yoav Goldberg)

http://u.cs.biu.ac.il/~yogo/nnlp.pdf


The Definitive Guide to Natural Language Processing (monkeylearn.com)

https://monkeylearn.com/blog/the-definitive-guide-to-natural-language-processing/


Introduction to Natural Language Processing (algorithmia.com)

https://blog.algorithmia.com/introduction-natural-language-processing-nlp/


Natural Language Processing Tutorial (vikparuchuri.com)

http://www.vikparuchuri.com/blog/natural-language-processing-tutorial/


Natural Language Processing (almost) from Scratch (arxiv.org)

https://arxiv.org/pdf/1103.0398.pdf


深度学习和自然语言处理


Deep Learning applied to NLP (arxiv.org)

https://arxiv.org/pdf/1703.03091.pdf


Deep Learning for NLP (without Magic) (Richard Socher)

https://nlp.stanford.edu/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf


Understanding Convolutional Neural Networks for NLP (wildml.com)

http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/


Deep Learning, NLP, and Representations (colah.github.io)

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/


Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai)

https://explosion.ai/blog/deep-learning-formula-nlp


Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com)

https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/


Deep Learning for NLP with Pytorch (pytorich.org)                                            

http://pytorch.org/tutorials/beginner/deep_learning_nlp_tutorial.html


词向量


Bag of Words Meets Bags of Popcorn (kaggle.com)

https://www.kaggle.com/c/word2vec-nlp-tutorial


On word embeddings Part I, Part II, Part III (sebastianruder.com)

http://sebastianruder.com/word-embeddings-1/index.html

http://sebastianruder.com/word-embeddings-softmax/index.html

http://sebastianruder.com/secret-word2vec/index.html


The amazing power of word vectors (acolyer.org)

https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/


word2vec Parameter Learning Explained (arxiv.org)

https://arxiv.org/pdf/1411.2738.pdf


Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com)

http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/

http://mccormickml.com/2017/01/11/word2vec-tutorial-part-2-negative-sampling/


编码器-解码器


Attention and Memory in Deep Learning and NLP (wildml.com)

http://www.wildml.com/2016/01/attention-and-memory-in-deep-learning-and-nlp/


Sequence to Sequence Models (tensorflow.org)

https://www.tensorflow.org/tutorials/seq2seq


Sequence to Sequence Learning with Neural Networks (NIPS 2014)

https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf


Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey)

https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa


tf-seq2seq (google.github.io)

https://google.github.io/seq2seq/


Python


Machine Learning Crash Course (google.com)

https://developers.google.com/machine-learning/crash-course/


Awesome Machine Learning (github.com/josephmisiti)

https://github.com/josephmisiti/awesome-machine-learning#python


7 Steps to Mastering Machine Learning With Python (kdnuggets.com)

http://www.kdnuggets.com/2015/11/seven-steps-machine-learning-python.html


An example machine learning notebook (nbviewer.jupyter.org)

http://nbviewer.jupyter.org/github/rhiever/Data-Analysis-and-Machine-Learning-Projects/blob/master/example-data-science-notebook/Example%20Machine%20Learning%20Notebook.ipynb


Machine Learning with Python (tutorialspoint.com)

https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_quick_guide.htm


范例


How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com)

http://machinelearningmastery.com/implement-perceptron-algorithm-scratch-python/


Implementing a Neural Network from Scratch in Python (wildml.com)

http://www.wildml.com/2015/09/implementing-a-neural-network-from-scratch/


A Neural Network in 11 lines of Python (iamtrask.github.io)

http://iamtrask.github.io/2015/07/12/basic-python-network/


Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com)

http://www.kdnuggets.com/2016/01/implementing-your-own-knn-using-python.html


ML from Scatch (github.com/eriklindernoren)

https://github.com/eriklindernoren/ML-From-Scratch


Python Machine Learning (2nd Ed.) Code Repository (github.com/rasbt)

https://github.com/rasbt/python-machine-learning-book-2nd-edition


Scipy and numpy


Scipy Lecture Notes (scipy-lectures.org)

http://www.scipy-lectures.org/


Python Numpy Tutorial (Stanford CS231n)

http://cs231n.github.io/python-numpy-tutorial/


An introduction to Numpy and Scipy (UCSB CHE210D)

https://engineering.ucsb.edu/~shell/che210d/numpy.pdf


A Crash Course in Python for Scientists (nbviewer.jupyter.org)

http://nbviewer.jupyter.org/gist/rpmuller/5920182#ii.-numpy-and-scipy


scikit-learn


PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org)

http://nbviewer.jupyter.org/github/jakevdp/sklearn_pycon2015/blob/master/notebooks/Index.ipynb


scikit-learn Classification Algorithms (github.com/mmmayo13)

https://github.com/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb


scikit-learn Tutorials (scikit-learn.org)

http://scikit-learn.org/stable/tutorial/index.html


Abridged scikit-learn Tutorials (github.com/mmmayo13)

https://github.com/mmmayo13/scikit-learn-beginners-tutorials


Tensorflow


Tensorflow Tutorials (tensorflow.org)

https://www.tensorflow.org/tutorials/


Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm)

https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c


TensorFlow: A primer (metaflow.fr)

https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3


RNNs in Tensorflow (wildml.com)

http://www.wildml.com/2016/08/rnns-in-tensorflow-a-practical-guide-and-undocumented-features/


Implementing a CNN for Text Classification in TensorFlow (wildml.com)

http://www.wildml.com/2015/12/implementing-a-cnn-for-text-classification-in-tensorflow/


How to Run Text Summarization with TensorFlow (surmenok.com)

http://pavel.surmenok.com/2016/10/15/how-to-run-text-summarization-with-tensorflow/


PyTorch


PyTorch Tutorials (pytorch.org)

http://pytorch.org/tutorials/


A Gentle Intro to PyTorch (gaurav.im)

http://blog.gaurav.im/2017/04/24/a-gentle-intro-to-pytorch/


Tutorial: Deep Learning in PyTorch (iamtrask.github.io)

https://iamtrask.github.io/2017/01/15/pytorch-tutorial/


PyTorch Examples (github.com/jcjohnson)

https://github.com/jcjohnson/pytorch-examples


PyTorch Tutorial (github.com/MorvanZhou)

https://github.com/MorvanZhou/PyTorch-Tutorial


PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey)

https://github.com/yunjey/pytorch-tutorial


数学


Math for Machine Learning (ucsc.edu)

https://people.ucsc.edu/~praman1/static/pub/math-for-ml.pdf


Math for Machine Learning (UMIACS CMSC422)

http://www.umiacs.umd.edu/~hal/courses/2013S_ML/math4ml.pdf


线性代数


An Intuitive Guide to Linear Algebra (betterexplained.com)

https://betterexplained.com/articles/linear-algebra-guide/


A Programmer’s Intuition for Matrix Multiplication (betterexplained.com)

https://betterexplained.com/articles/matrix-multiplication/


Understanding the Cross Product (betterexplained.com)

https://betterexplained.com/articles/cross-product/


Understanding the Dot Product (betterexplained.com)

https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/


Linear Algebra for Machine Learning (U. of Buffalo CSE574)

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/LinearAlgebra.pdf


Linear algebra cheat sheet for deep learning (medium.com)

https://medium.com/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c


Linear Algebra Review and Reference (Stanford CS229)

http://cs229.stanford.edu/section/cs229-linalg.pdf


概率


Understanding Bayes Theorem With Ratios (betterexplained.com)

https://betterexplained.com/articles/understanding-bayes-theorem-with-ratios/


Review of Probability Theory (Stanford CS229)

http://cs229.stanford.edu/section/cs229-prob.pdf


Probability Theory Review for Machine Learning (Stanford CS229)

https://see.stanford.edu/materials/aimlcs229/cs229-prob.pdf


Probability Theory (U. of Buffalo CSE574)

http://www.cedar.buffalo.edu/~srihari/CSE574/Chap1/Probability-Theory.pdf


Probability Theory for Machine Learning (U. of Toronto CSC411)

http://www.cs.toronto.edu/~urtasun/courses/CSC411_Fall16/tutorial1.pdf


微积分


How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com)

https://betterexplained.com/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/


How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com)

https://betterexplained.com/articles/derivatives-product-power-chain/


Vector Calculus: Understanding the Gradient (betterexplained.com)

https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/


Differential Calculus (Stanford CS224n)

http://web.stanford.edu/class/cs224n/lecture_notes/cs224n-2017-review-differential-calculus.pdf


Calculus Overview (readthedocs.io)

http://ml-cheatsheet.readthedocs.io/en/latest/calculus.html


相关报道:

https://medium.com/machine-learning-in-practice/over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition-dd8cf53cb7dc



●编号680,输入编号直达本文

●输入m获取文章目录

推荐↓↓↓

算法与数据结构

更多推荐18个技术类公众微信

涵盖:程序人生、算法与数据结构、黑客技术与网络安全、大数据技术、前端开发、Java、Python、Web开发、安卓开发、iOS开发、C/C++、.NET、Linux、数据库、运维等。

登录查看更多
0

相关内容

机器学习(Machine Learning)是一个研究计算学习方法的国际论坛。该杂志发表文章,报告广泛的学习方法应用于各种学习问题的实质性结果。该杂志的特色论文描述研究的问题和方法,应用研究和研究方法的问题。有关学习问题或方法的论文通过实证研究、理论分析或与心理现象的比较提供了坚实的支持。应用论文展示了如何应用学习方法来解决重要的应用问题。研究方法论文改进了机器学习的研究方法。所有的论文都以其他研究人员可以验证或复制的方式描述了支持证据。论文还详细说明了学习的组成部分,并讨论了关于知识表示和性能任务的假设。 官网地址:http://dblp.uni-trier.de/db/journals/ml/
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
271+阅读 · 2020年1月1日
专知会员服务
116+阅读 · 2019年12月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
吐血整理!10 个机器学习教程汇总,爱可可推荐!
大数据技术
16+阅读 · 2019年9月2日
【干货】史上最全的PyTorch学习资源汇总
深度学习与NLP
24+阅读 · 2019年5月18日
【2018最新版】 200个机器学习 && NLP && Python 相关教程
机器学习算法与Python学习
6+阅读 · 2018年8月2日
教程推荐 | 机器学习、Python等最好的150余个教程
七月在线实验室
7+阅读 · 2018年6月6日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
150 多个 ML、NLP 和 Python 相关的教程
Python开发者
14+阅读 · 2017年8月15日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
Arxiv
24+阅读 · 2019年11月24日
Arxiv
136+阅读 · 2018年10月8日
Arxiv
22+阅读 · 2018年8月30日
Arxiv
25+阅读 · 2018年1月24日
VIP会员
相关VIP内容
简明扼要!Python教程手册,206页pdf
专知会员服务
47+阅读 · 2020年3月24日
2019->2020必看的十篇「深度学习领域综述」论文
专知会员服务
271+阅读 · 2020年1月1日
专知会员服务
116+阅读 · 2019年12月24日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
94+阅读 · 2019年12月23日
【机器学习课程】Google机器学习速成课程
专知会员服务
164+阅读 · 2019年12月2日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
91+阅读 · 2019年10月16日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
吐血整理!10 个机器学习教程汇总,爱可可推荐!
大数据技术
16+阅读 · 2019年9月2日
【干货】史上最全的PyTorch学习资源汇总
深度学习与NLP
24+阅读 · 2019年5月18日
【2018最新版】 200个机器学习 && NLP && Python 相关教程
机器学习算法与Python学习
6+阅读 · 2018年8月2日
教程推荐 | 机器学习、Python等最好的150余个教程
七月在线实验室
7+阅读 · 2018年6月6日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
150 多个 ML、NLP 和 Python 相关的教程
Python开发者
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员