属性网络嵌入的目的是结合网络的拓扑结构和节点属性学习低维节点表示。现有的大多数方法要么通过网络结构传播属性,要么通过编码-解码器框架学习节点表示。然而,基于传播的方法倾向于选择网络结构而不是节点属性,而编码-解码器方法倾向于忽略近邻之外的长连接。为了解决这些限制,同时得到这两个方面的优点,我们设计了交叉融合层的无监督属性网络嵌入。具体来说,我们首先构建两个独立的视图来处理网络结构和节点属性,然后设计跨融合层来实现两视图之间灵活的信息交换和集成。交叉融合层的关键设计目标有三方面:1)允许关键信息沿着网络结构传播;2)在传播过程中对每个节点的局部邻域进行异构编码;3)加入额外的节点属性通道,使属性信息不被结构视图所掩盖。在三个数据集和三个下游任务上的大量实验证明了该方法的有效性。
https://cs.nju.edu.cn/yuanyao/static/wsdm2021.pdf
专知便捷查看
便捷下载,请关注专知公众号(点击上方蓝色专知关注)
后台回复“UANE” 可以获取《【WSDM2021】基于交叉融合的无监督属性网络嵌入》专知下载链接索引