【WSDM2021】基于交叉融合的无监督属性网络嵌入

2020 年 12 月 17 日 专知

属性网络嵌入的目的是结合网络的拓扑结构和节点属性学习低维节点表示。现有的大多数方法要么通过网络结构传播属性,要么通过编码-解码器框架学习节点表示。然而,基于传播的方法倾向于选择网络结构而不是节点属性,而编码-解码器方法倾向于忽略近邻之外的长连接。为了解决这些限制,同时得到这两个方面的优点,我们设计了交叉融合层的无监督属性网络嵌入。具体来说,我们首先构建两个独立的视图来处理网络结构和节点属性,然后设计跨融合层来实现两视图之间灵活的信息交换和集成。交叉融合层的关键设计目标有三方面:1)允许关键信息沿着网络结构传播;2)在传播过程中对每个节点的局部邻域进行异构编码;3)加入额外的节点属性通道,使属性信息不被结构视图所掩盖。在三个数据集和三个下游任务上的大量实验证明了该方法的有效性。


https://cs.nju.edu.cn/yuanyao/static/wsdm2021.pdf



专知便捷查看

便捷下载,请关注专知公众号(点击上方蓝色专知关注)

  • 后台回复“UANE” 可以获取《【WSDM2021】基于交叉融合的无监督属性网络嵌入》专知下载链接索引

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎注册登录专知www.zhuanzhi.ai,获取5000+AI主题干货知识资料!
欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程资料和与专家交流咨询
点击“ 阅读原文 ”,了解使用 专知 ,查看获取5000+AI主题知识资源
登录查看更多
0

相关内容

网络嵌入旨在学习网络中节点的低维度潜在表示,所学习到的特征表示可以用作基于图的各种任务的特征,例如分类,聚类,链路预测和可视化。
专知会员服务
68+阅读 · 2021年4月27日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
13+阅读 · 2021年2月25日
专知会员服务
27+阅读 · 2021年2月17日
【WSDM2021】通过学习中间监督信号改进多跳知识库问答
专知会员服务
10+阅读 · 2021年1月14日
【WSDM2021】多交互注意力网络细粒度特征学习的CTR预测
专知会员服务
24+阅读 · 2020年12月27日
专知会员服务
108+阅读 · 2020年12月22日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
【WSDM2021】弱监督下的分层元数据感知文档分类
专知会员服务
10+阅读 · 2020年11月16日
【AAAI2021】自监督对应学习的对比转换
专知
12+阅读 · 2020年12月11日
【KDD2020】图神经网络生成式预训练
专知
22+阅读 · 2020年7月3日
【ICML2020】对比多视角表示学习
专知
19+阅读 · 2020年6月28日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
5+阅读 · 2018年4月30日
VIP会员
相关VIP内容
专知会员服务
68+阅读 · 2021年4月27日
专知会员服务
39+阅读 · 2021年4月5日
【WWW2021】基于图层次相关性匹配信号的Ad-hoc 检索
专知会员服务
13+阅读 · 2021年2月25日
专知会员服务
27+阅读 · 2021年2月17日
【WSDM2021】通过学习中间监督信号改进多跳知识库问答
专知会员服务
10+阅读 · 2021年1月14日
【WSDM2021】多交互注意力网络细粒度特征学习的CTR预测
专知会员服务
24+阅读 · 2020年12月27日
专知会员服务
108+阅读 · 2020年12月22日
【WSDM2021】保存节点相似性的图卷积网络
专知会员服务
40+阅读 · 2020年11月22日
【WSDM2021】弱监督下的分层元数据感知文档分类
专知会员服务
10+阅读 · 2020年11月16日
Top
微信扫码咨询专知VIP会员