第6期:DeepRL每日论文快报

2019 年 11 月 7 日 深度强化学习实验室
DeepRL每日论文快报

来源自:arxiv.com

编辑:DeepRL

时间:2019-11-08



Gym-Ignition: Reproducible Robotic Simulations for Reinforcement Learning


arxiv链接: https://arxiv.org/pdf/1911.01715.pdf



DeepRacer: Educational Autonomous Racing Platform for Experimentation with Sim2Real Reinforcement Learning


arxiv链接: https://arxiv.org/pdf/1911.01562.pdf




GitHub每日同步更新(欢迎star)


https://github.com/NeuronDance/DeepRL/tree/master/DRL-PaperDaily


微信交流请加助手:NeuronDance(备注:DRL学习)


化学习实验室

算法、框架、资料、前沿信息等


GitHub仓库

https://github.com/NeuronDance/DeepRL

欢迎Fork,Star,Pull Request


往期论文精彩回顾

第5期论文:2019-11-07(5篇,一篇DeepMind发表)

第4期论文:2019-11-05(4篇)

第3期论文:2019-11-04(6篇)

第2期论文:2019-11-03(3篇)

第1期论文:2019-11-02(5篇)



第32篇:腾讯AI Lab强化学习招聘(正式/实习)

第31篇:强化学习,路在何方?

第30篇:强化学习的三种范例

第29篇:框架ES-MAML:进化策略的元学习方法

第28篇:138页“策略优化”PPT--Pieter Abbeel

第27篇:迁移学习在强化学习中的应用及最新进展

第26篇:深入理解Hindsight Experience Replay

第25篇:10项【深度强化学习】赛事汇总

第24篇:DRL实验中到底需要多少个随机种子?

第23篇:142页"ICML会议"强化学习笔记

第22篇:通过深度强化学习实现通用量子控制

第21篇:《深度强化学习》面试题汇总

第20篇:《深度强化学习》招聘汇总(13家企业)

第19篇:解决反馈稀疏问题之HER原理与代码实现

第18篇:"DeepRacer" —顶级深度强化学习挑战赛

第17篇:AI Paper | 几个实用工具推荐

第16篇:AI领域:如何做优秀研究并写高水平论文?

第15篇: DeepMind开源三大新框架!
第14篇: 61篇NIPS2019深度强化学习论文及部分解读
第13篇: OpenSpiel(28种DRL环境+24种DRL算法)
第12篇: 模块化和快速原型设计的Huskarl DRL框架
第11篇: DRL在Unity自行车环境中配置与实践
第10篇: 解读72篇DeepMind深度强化学习论文
第9篇: 《AutoML》:一份自动化调参的指导
第8篇: ReinforceJS库(动态展示DP、TD、DQN)
第7篇: 10年NIPS顶会DRL论文(100多篇)汇总
第6篇: ICML2019-深度强化学习文章汇总
第5篇: 深度强化学习在阿里巴巴的技术演进
第4篇: 深度强化学习十大原则
第3篇: “超参数”自动化设置方法---DeepHyper
第2篇: 深度强化学习的加速方法
第1篇: 深入浅出解读"多巴胺(Dopamine)论文"、环境配置和实例分析



登录查看更多
0

相关内容

强化学习(RL)是机器学习的一个领域,与软件代理应如何在环境中采取行动以最大化累积奖励的概念有关。除了监督学习和非监督学习外,强化学习是三种基本的机器学习范式之一。 强化学习与监督学习的不同之处在于,不需要呈现带标签的输入/输出对,也不需要显式纠正次优动作。相反,重点是在探索(未知领域)和利用(当前知识)之间找到平衡。 该环境通常以马尔可夫决策过程(MDP)的形式陈述,因为针对这种情况的许多强化学习算法都使用动态编程技术。经典动态规划方法和强化学习算法之间的主要区别在于,后者不假设MDP的确切数学模型,并且针对无法采用精确方法的大型MDP。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【IJCAI2020-华为诺亚】面向深度强化学习的策略迁移框架
专知会员服务
28+阅读 · 2020年5月25日
【快讯】KDD2020论文出炉,216篇上榜, 你的paper中了吗?
专知会员服务
51+阅读 · 2020年5月16日
【综述】自动驾驶领域中的强化学习,附18页论文下载
专知会员服务
176+阅读 · 2020年2月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
184+阅读 · 2020年2月1日
2019必读的十大深度强化学习论文
专知会员服务
59+阅读 · 2020年1月16日
【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
213+阅读 · 2020年1月13日
AAAI2020接受论文列表,1591篇论文目录全集
专知会员服务
99+阅读 · 2020年1月12日
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
深度强化学习简介
专知
30+阅读 · 2018年12月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
1024 | 最全面试总结,深度学习500问,面试必备【下载】
机器学习算法与Python学习
53+阅读 · 2018年10月24日
63页【深度CNN-目标检测】综述【PDF下载】
机器学习算法与Python学习
4+阅读 · 2018年10月18日
548页MIT强化学习教程,收藏备用【PDF下载】
机器学习算法与Python学习
17+阅读 · 2018年10月11日
Heterogeneous Deep Graph Infomax
Arxiv
12+阅读 · 2019年11月19日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
8+阅读 · 2019年1月8日
Arxiv
4+阅读 · 2018年10月5日
Arxiv
7+阅读 · 2018年1月10日
VIP会员
相关VIP内容
相关资讯
OpenAI官方发布:强化学习中的关键论文
专知
14+阅读 · 2018年12月12日
深度强化学习简介
专知
30+阅读 · 2018年12月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
1024 | 最全面试总结,深度学习500问,面试必备【下载】
机器学习算法与Python学习
53+阅读 · 2018年10月24日
63页【深度CNN-目标检测】综述【PDF下载】
机器学习算法与Python学习
4+阅读 · 2018年10月18日
548页MIT强化学习教程,收藏备用【PDF下载】
机器学习算法与Python学习
17+阅读 · 2018年10月11日
Top
微信扫码咨询专知VIP会员