ACCV 2020最佳论文等三项大奖出炉!华为诺亚获最佳学生论文奖

2020 年 12 月 1 日 CVer

点击上方“CVer”,选择加"星标"置顶

重磅干货,第一时间送达

本文转载自:AI科技评论
作者| 陈大鑫
ACCV (Asian Conference on Cpmputer Vision)是仅次于CVPR、ICCV、ECCV 的计算机视觉领域会议(与BMVC类似),影响力逐年上升,今年的ACCV 2020 原计划在日本京都于11月30-12月4日召开,现因疫情原因改为线上。
ACCV 2020 共录用论文 255 篇,官方提供所有论文开放下载。
官网链接:http://accv2020.kyoto/
截止目前,大会已经公布了最佳论文奖、最佳学生论文奖、最佳应用论文奖等三项大奖,其中帝国理工和华为诺亚方舟合作获得了最佳学生论文奖。
以下AI科技评论就带大家让我们一起来看看这三项大奖吧 !

1

最佳论文奖

获奖论文:《A sparse gaussian  apppproach   to region-based 6DoF Object Tracking》
论文作者:Manuel Stoiber、Martin Pfanne、Klaus H. Strobl、Rudolph Triebel、Alin Albu-Schaffer 。
研究单位:德国航空航天中心、慕尼黑工业大学。
论文链接:
https://openaccess.thecvf.com/content/ACCV2020/papers/Stoiber_A_Sparse_Gaussian_Approach_to_Region-Based_6DoF_Object_Tracking_ACCV_2020_paper.pdf
开源代码:https://github.com/DLR-RM/RBGT  
论文介绍:
本文提出了一种新颖、高效的稀疏方法,用于基于区域的6DoF目标跟踪,该方法仅需要单目RGB相机和3D物体模型。
本文工作的主要贡献是一个概率模型,该模型沿对应线稀疏地考虑了图像信息。
对于实现,本文提供了高效的离散比例空间公式。此外,本文得出了一个新颖的数学证明,表明提出的似然函数遵循高斯分布。
基于此信息,本文为正则化牛顿优化中使用的对数似然导数开发了鲁棒近似。       
在多个实验中,作者表明,在跟踪成功方面,本文的方法优于基于区域的SOTA模型,且速度还要快上一个数量级。
我们的跟踪器的源代码是公开可用的。

最佳论文荣誉提名
获奖论文:《Pre-training without Natural Images》
作者:Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto,Eisuke Yamagata,Ryosuke Yamada, Nakamasa Inoue,Akio Nakamura,and Yutaka Satoh
研究单位:日本国家先进工业研究院、东京电机大学、筑波大学、东京理工学院
论文链接:https://openaccess.thecvf.com/content/ACCV2020/html/Kataoka_Pre-training_without_Natural_Images_ACCV_2020_paper.html
开源地址:https://github.com/hirokatsukataoka16/FractalDB
 
2

最佳学生论文奖

获奖论文:《Project to Adapt: Domain Adaptation for Depth Completion from Noisy and Sparse Sensor Data》
论文作者:Adrian Lopez-Rodriguez、Benjamin Busam、 Krystian Mikolajczyk
研究单位:帝国理工学院、华为诺亚方舟实验室、慕尼黑工业大学
论文链接: https://openaccess.thecvf.com/content/ACCV2020/papers/Lopez-Rodriguez_Project_to_Adapt_Domain_Adaptation_for_Depth_Completion_from_Noisy_ACCV_2020_paper.pdf  
论文介绍:
深度完成(Depth completion)的目的是根据稀疏的深度输入预测密集的深度图。获取用于深度完成设置的密集ground truth 注释可能很困难,于此同时,实际LiDAR测量值与合成数据之间的显着领域差距也阻止了在虚拟设置中成功训练模型。
我们提出了一种针对稀疏到稠密深度完成的领域适应方法,该方法是根据合成数据进行训练的,而无需在实际域中进行注释或使用其他传感器。
如上图所示,我们的方法模拟了RGB + LiDAR设置中的真实传感器噪声,并包括三个模块:通过投影模拟合成域中的真实LiDAR输入、过滤真实噪声的LiDAR以进行监控以及使用CycleGAN调整合成RGB图像方法。我们根据KITTI深度完成基准中的SOTA技术对这些模块进行了广泛评估,评估结果显示出我们方法得到了明显的改进。
最佳学生论文荣誉提名奖

论文链接: https://openaccess.thecvf.com/content/ACCV2020/html/Navasardyan_Image_Inpainting_with_Onion_Convolutions_ACCV_2020_paper.html
 
3

最佳应用论文奖


获奖论文《Watch,read and  lookup:learning to spot signs from multiple supervisors》
论文链接: https://openaccess.thecvf.com/content/ACCV2020/html/Momeni_Watch_read_and_lookup_learning_to_spot_signs_from_multiple_ACCV_2020_paper.html
论文介绍:
本文工作的重点是标识识别:给出一个孤立标识的视频,我们的任务是确定是否在连续的,共同表达的手语视频中对它进行了标记。
为了实现此标识发现任务,我们通过以下几种类型的可用监督来训练模型:
(1)观看现有的带有稀疏标签的镜头;
(2)阅读提供附加弱监督的相关字幕(标记内容的现有翻译);
 (3)在视觉手语词典中查找单词(没有可用的共同标注的示例),以实现新颖的手势识别。
使用噪声对比估计和多实例学习的原理将这三个任务集成到一个统一的学习框架中:
我们在 low-shot sign spotting基准上验证了我们方法的有效性。此外,我们提供了隔离符号的机器可读的英国手语(BSL)词典数据集BslDict,以促进对该任务的研究。
数据集,模型和代码可在我们的项目页面上获得:https://www.robots.ox.ac.uk/~vgg/research/bsldict/
最佳应用论文荣誉提名奖
论文链接:
https://openaccess.thecvf.com/content/ACCV2020/html/Li_A_cost-effective_method_for_improving_and_re-purposing_large_pre-trained_GANs_ACCV_2020_paper.html
论文作者:Qi Li , Long Mai , Michael A. Alcorn, and Anh Nguyen
研究单位:奥本大学、Adobe

彩蛋
ACCV 2020线上会议主界面:
线上会议虚拟的爬山:
线上会议房间:

下载:CVPR /  ECCV 2020开源代码


后台回复:CVPR2020,即可下载CVPR 2020代码开源的论文合集

后台回复:ECCV2020,即可下载ECCV 2020代码开源的论文合集


重磅!CVer-论文写作与投稿交流群成立


扫码添加CVer助手,可申请加入CVer-论文写作与投稿 微信交流群,目前已满2400+人,旨在交流顶会(CVPR/ICCV/ECCV/NIPS/ICML/ICLR/AAAI等)、顶刊(IJCV/TPAMI/TIP等)、SCI、EI、中文核心等写作与投稿事宜。


同时也可申请加入CVer大群和细分方向技术群,细分方向已涵盖:目标检测、图像分割、目标跟踪、人脸检测&识别、OCR、姿态估计、超分辨率、SLAM、医疗影像、Re-ID、GAN、NAS、深度估计、自动驾驶、强化学习、车道线检测、模型剪枝&压缩、去噪、去雾、去雨、风格迁移、遥感图像、行为识别、视频理解、图像融合、图像检索、论文投稿&交流、PyTorch和TensorFlow等群。


一定要备注:研究方向+地点+学校/公司+昵称(如论文写作+上海+上交+卡卡),根据格式备注,可更快被通过且邀请进群


▲长按加微信群


▲长按关注CVer公众号

整理不易,请给CVer点赞和在看

登录查看更多
0

相关内容

Asian Conference on Computer Vision(ACCV2020)将于2020年11月30日至12月4日在京都举行。ACCV是一个两年一度的国际会议,主要由亚洲计算机视觉联合会主办。这一系列会议为研究人员、开发人员和实践者提供了一个重要的论坛,以展示和讨论计算机视觉和相关领域中的新问题、解决方案和技术。官网链接:http://accv2020.kyoto/
自然语言处理顶会COLING2020最佳论文出炉!
专知会员服务
23+阅读 · 2020年12月12日
ECCV 2020 五项大奖出炉!普林斯顿邓嘉获最佳论文奖
专知会员服务
17+阅读 · 2020年8月25日
CVPR 2020 最佳论文与最佳学生论文!
专知会员服务
35+阅读 · 2020年6月17日
ECCV 2020接受论文出炉,1361篇都在这了
专知
23+阅读 · 2020年7月4日
AAAI 2019最佳论文公布,CMU、斯坦福、MIT上榜
新智元
12+阅读 · 2019年1月28日
ICCV 2017获奖论文公布 何恺明成为最大赢家! | 聚焦
网易智能菌
13+阅读 · 2017年10月25日
Joint Monocular 3D Vehicle Detection and Tracking
Arxiv
8+阅读 · 2018年12月2日
Arxiv
4+阅读 · 2018年1月19日
Arxiv
27+阅读 · 2017年12月6日
VIP会员
Top
微信扫码咨询专知VIP会员