丘吉尔曾说过,“The longer you can look back, the farther you can look forward. (回顾历史越久远,展望未来就越深远)”,为纪念人工智能领域做出杰出贡献的先辈与开拓者们,鼓励更多后起之秀投身该领域,人工智能国际杂志《IEEE Intelligent Systems》自2006年始至今陆续推选出了60位人工智能专家(参看《诺伯特·维纳奖得主王飞跃 | AI 名人堂,世界人工智能60年60位名人榜》)。德先生自2016年10月31日起,已定期于每周一在微信公众号(D-Technologies)上发布人工智能名人堂60位成员的相关介绍。往期内容可查看延伸阅读。
1
人物生平
Tom M. Mitchell,1951年出生于宾夕法尼亚的布洛斯堡,并在纽约度过了童年。1973年,他在麻省理工学院获得了电子工程学学士学位,并于1979年获得了斯坦福大学的博士学位。
1978年,Mitchell在罗格斯大学(Rutgers University)开始了教学生涯。在罗格斯大学任职期间,他担任计算机系助理和副教授职位。1986年,他离开罗格斯大学加入卡内基梅隆大学,成为一名教授。2006年,Mitchell被任命为计算机科学学院机器学习系的第一任系主席。
2010年,他因在机器学习领域的杰出地位入选美国国家工程院院士。他于1990年成为美国人工智能学会会士(AAAI Fellow),并于2008年当选为美国科学促进会会士(AAAS Fellow)。2016年,当选为美国人文与科学院院士。
Mitchell在计算机科学领域出版了130余篇文章,内容涵盖机器学习、人工智能、认知神经科学等领域。Mitchell在1997年出版了机器学习领域的第一本教科书,名为《机器学习》。《机器学习》是机器学习领域的奠基之作,被奉为第一代机器学习的圣经,是入门机器学习的必读教材之一。
2
精彩演讲
《突破人类和机器的边界》
Tom M. Mitchell
今天我在这里和大家来探讨一下这个问题,也就是我们的智能如何从物理的材料当中实现突破,现在科学界还是存在许多未被解答的问题,有两个方式可以研究。首先研究大脑,因为大脑是有智能的,第二努力打造一种具有智能的机器,这是两个学习智能的方法,已经是进行了很长时间了。
大脑和智能机器
没有交集但可交叉研究
▼
我今天想说的是,这两个领域相互之间没有交集,每个领域的专家对另外一个领域都不太了解,我们需要投入更多的资源来进行两者之间的交叉研究。首先讲的是第一点,这两个研究领域在过去十年里面取得了很大的进展;第二点,我们现在已经对两个维度都进行相应的实例研究,两者之间的确出现了一些交集,可以互相学习和借鉴。
所以我会对这方面进行一些探讨,希望进一步激活两者之间的交集。首先可以看一下,我们的人工智能在过去的十几年里取得了重大进展,最近人工智能已经战胜了人类围棋的冠军,而且国际象棋、德州扑克也已经被人工智能攻下,现在我们看到的则是无人驾驶汽车,比如Uber就在进行这样的测试。
在过去的十年里,计算机视觉技术的进展很快,机器识别的准确率从过去的60%上升到95%左右。在语音方面也实现了突破,去年10月,微软的对话语音识别技术在产业标准Switchboard语音识别基准测试中实现了词错率(word error rate, 简称WER)低至5.9%的突破 ,创造了当时该领域内错误率的最低纪录。
比如前面讲到了下围棋、下象棋,人工智能在这一领域突破非常快,背后主要是依靠深层次的机器学习。另外我们在脑科学方面的发展也非常迅猛,在过去十几年的时间里,有很多先进的技术和设备,使得我们可以采用无创或者微创的方法进入到人的大脑,进行毫米级地观察,而且在毫秒内就可以对几千张影像进行分析,观察人脑的活性。此外,动物大脑的研究更加令人欢心鼓舞,通过基因方面的研究,在基因上进行相应的工程,对老鼠和其他动物相应的神经元进行修饰、改变,这样可以更好的对人的神经活动进行一些管理和控制。
通过这样一些脑科学的发展,脑科学领域的一些理论和假设都取得了突破。比如老鼠在一个迷宫中行走的时候,老鼠对自己在迷宫中的位置的感觉到底是怎样的,这就可以通过观测它的神经元放电来找到。不同的情况下,大脑各个区会域进行相应的振荡,因此可以在不同的时间点进行观测,当人们在社交的时候,大脑当中管社交的部分会得到同步的激活,不过有自闭症的人和正常人的状况也不一样。总之,无论是人工智能还是脑科学,都取得了令人瞩目的巨大进展。
对脑神经的活动预测
推动人工智能的进步
▼
所以就出现了这样一个问题:为什么不将两者结合起来呢?在研究方面,无论时脑科学还是人工智能都在进行交叉的研究。首先是计算机视觉,神经网络的确使得计算机的视觉发生革命性的改变,这样的一个神经网络,可以用来预测人脑当中的神经元的活动,包括它的视觉皮层相应的活动,这是一个深层次的神经网络。我们可以来看一些细节,左上方是单个神经网络当中的单元,通过输入输出可以看到相关的情况。我们可以对它的输入进行研究,观察它到底是怎样的组合,右下图展现的是这些单个神经元组成的网络,一个输出成为另外一个输入的情况,我们可以对这样深层次的网络进行训练,比如把输入的影像通过输出展现出这个影像到底是什么,然后进行相应的深度学习。
这个时候我们就可以对网络当中滞后的阶段进行探测,看一下成为条件的时候它是怎么编码的。在2014年的时候,有人做了一些实验,他们训练了不同的网络,在训练了这些神经网络之后,把同样的影像给这些神经网络看,通过FMI的扫描仪,观察人的大脑当中相应的神经活动,来更好地进行预测,这是令人称奇的的结果。现在人工的神经网络可以被我们用来训练,做一些相应的预测,也就是说我们现在可以建立一种桥梁,对大脑当中的脑神经的活动进行预测,这样就打开了无限的可能,可以回答很多有趣的问题。
比如人的视觉到底是怎样形成的,以及可以用怎样的设备设计更好的人工神经网络,帮助我们做这样的预测。一层一层进行输入、输出,这样可以进一步推动人工的神经网络。我们知道大脑当中的确是不一样的,大脑当中是有前输和后输的,在这个桥梁当中可以进行研究,人工的大脑和人的大脑到底有什么区别,然后相互借鉴、促进。
这里有另外一个例子,也是来自于最近的一个研究,是自然语言处理领域的研究成果,那就是谷歌的自动翻译系统的能力得到了很大的提升,比之前更精确了,这是为什么呢?主要是深层次的神经网络,更可能是由于网络里有一些储存。通过对大脑的研究,我们观测大脑怎样用神经活动来解释不同单词相应的词义,这些词义给了我们更好的回答方式。对这些细节进行研究,我们会产生一种模型或者理论,来帮助我们对大脑的活动进行预测,通过这样一个模型结构,来对应任何输入。
比如说电话,首先这个模型产生一个代码,用它预测神经活动,大脑当中有两万个不同的位置被预测出来。然后进一步通过矢量来进行预测,比如这里是芹菜和飞机的两个矢量,两个矢量的特征都和相应的词对应。对应芹菜可以看到和芹菜相关联的字数,口味是和芹菜相应的一个关联度;对飞机来说,则会出现很多的动词,可以看到相关的一些词就出现了。
通过这样的一些模型当中的编码,可以很好的复现一些皮层当中出现的词,我们对模型进行训练。我们看到在下面对任何词的神经活动,比如芹菜,把这些语义的特征组合起来,通过模型的学习,把这些特征进行关联,可以发现,“吃”这个词和芹菜这个词的关联度是最高的。通过这样的研究很有意义,给到一个新词,比如说之前没有训练过,在对它的预测分析分析当中我们发现,在83%的情况下有两个新的词,哪个是第一关联,哪个是第二关联,有50%的可能性是正确的,有的词从来没有出现过,也会有很高的识别率,也就是说,神经的活动对词义的表达,是用了我们矢量表达法来进行词义解释。这是技术的表达,在人工智能和人脑当中存在一个桥梁的关系。
猴子给人类的启示
关于强化学习
▼
这是技术的表达,在人工智能和人脑当中一个桥梁的关系。第三个例子是我们讲的强化学习,这个是现在非常流行的,比如相关的培训当中会出现一些强化学习的算法。很多时候对动物的一些奖励学习,也属于强化学习的方式。比如发一些糖给猴子吃,猴子认为这是奖励,所以大脑里有放电的现象,然后就可以找到对应的神经元。
这样的一种神经元放电代表什么呢?可能对这个奖励,也就是这个糖有所感应,所以放电了。通过这样的实验来训练这些猴子,给到猴子糖以后,后一秒就开始闪光,这个时候我们可以看到的情况就是给了猴子糖以后,猴子的神经元没有任何反应,而是当闪光以后,猴子的神经元才放电,说明猴子的神经元并不是因为给了糖才反应,而是对奖励这个事情本身放电,这是很酷的研究。
还有一种情况,没有给糖,只是闪光,猴子怎么反应?没有给糖,没有任何奖励,这个神经元就会怎么样来表达呢?闪光之后,猴子发现并没有给糖,这是一种抑郁,而不是奖励了,这是和强化学习直接相关的。这样的一个情况,很好地解释了我们看到的猴子的神经元的表现,因此在人工智能算法和我们人的大脑之间或者动物的大脑之间,有这样一种桥梁的关系,因此强化学习的算法对机器人的控制是可以用的,比如可以用于打败人类冠军的Alpha Go的训练。因此通过这样的一些对大脑行为的观测和检测可以帮助我们进行人工神经网络的训练。
通过这些方式,我们刚才也讲了矢量的应用和强化学习的方式,这样一些人工智能的算法,在我们的大脑当中,观测到了神经元活动的关联,因此我觉得,现在人的脑科学和人工智能方面到了可以有更多交集的好时机,我们应该在人工智能和脑科学之间搭建更多的桥梁。
我前面也举出了一些实例,希望大家可以进一步研究,尽管人的大脑不是由硅组成的电脑,但是有可能任何产生智能的物理方式都是有一些信息的约束条件的,这样的一种结构可以进行深层次的学习。我们可以从人工智能和人脑当中找到更多的答案帮助推进科学的进步,再次感谢各位。
3
人物问答
Q
您如何看待第三次人工智能浪潮,会否像前两次衰落?对于新入门的这些学习的学生,您现在有什么新的建议?
Tom Mitchell:确实在过去比如在20世纪80年代、90年代的时候,我们看到人工智能它的发展是有起有落,现在发展到今天,它又处于一个起的阶段,可是我们这次的起就不一定意味着有衰落。因为我们这子已经发现AI已经在商业方面取得了非常巨大的成功,这是在过去前所未见的一种成功。因此我们业界就对此非常乐观,包括在80年代的时候,日本所推出的这个第五代项目,它当时AI项目确实也取得了一定程度的成功,当时大家就处于一个比较盲目乐观的状态。
但是那个时候的成功并没有给我们带来更好的结果,现在完全是一个不同的时代了。所以在今天比如你可以和自己的手机对话,但是你难以想象在过去AI技术相关的这些设备甚至在五十年前它们都属于像瞎子一样的状态,它们无法看到你,它们没有办法辨析你的语音,更没有办法像现在的电脑机器一样和人进行竞赛,而且它在过去也不可能理解人所开的玩笑,也不可能真正把语音转变为文本,我们现在看到的这些成功都是过去完全没有见到,前所未有的。
而且我们的业界也投入了更多的资源来发展人工智能,这个资源的多也是前所未见,而且在企业界我们在研发方面所投入的时间精力和金钱也超过政府的层面。这也是我们过去从未见到的,这也是为什么我非常乐观,人工智能将会在未来有一个腾飞。简而言之,这是我们前所未见的一种进步,而且我们现在的人工智能可以让电脑看到你,而且也能够听懂你,这是一个巨大的改变。而且我也相信在下一个十年我们还能够看到我们与AI系统对话的前所未见的一些场景。因此,在机器学习方面,我们可以开发出很多新的方式,来辅助我们去学习,也可以辅助我们的教学。
Q
您对于成立AI这种公司有什么样的想法?AI这类的公司它能够成功究竟是取决于它的一些技术呢还是取决于它的产品?
Tom Mitchell:我本人认为如果一个AI公司他没有自己具体的一个产品的话,它的存在可能性是非常小的,尤其是在长期,而且现在我们能看到很多机遇,也就是AI公司所具有的机遇,特别他们要具体解决比如自动驾驶汽车还有自动的回复邮件等等,有很多这样的人工智能的公司他们在开发这样的产品。同时也有一个有趣的现象,我们也能够看到有些AI公司成立以后,纯是在开发技术,像deepmind,但是它也是一个比较特殊的例子,因为它最终长期发展的一个战略就是消失掉,最后它被谷歌收购了,谷歌在推出的AI产品当中可以看到之前deepmind技术的一个影子,所以如果是真正想要不凭产品,在AI这个领域当中去寻求到更多的精彩的话,实际上是一个比较短视的战略。这样的话,在短期当中可能资金不会消失太多,但是长期可能会产生一些问题。而且也只能寄望于被别的公司收购。
Q
对于AI人才培养有没有什么建议?
Tom Mitchell:关于AI人才的培养问题,我觉得您这个想法非常的好,也十分有潜力。因为毕竟现在AI的人才是处于一个供不应求的状态,所以我们也可以从中发现一些商机,比如说在网上可以去创造一些非常有趣、浅显一些的,而且也是非常实用的在线课程。
但是对于有些学生来说,有些付费的在线课程它的成本比较高,所以我们现在应该鼓励一些专门去研究继续教育这方面的企业,他们尽最大的努力去减少这些课堂的成本,同时也把这些课程的质量提高,让他们成为一等一的世界级的AI课程,这也是我们学生所需要的。除此之外,我们也可以建议更多的学习AI的学生去网上包括像courseva这样的平台去学习AI相关的课程,比如coursera网站上现在就有(安朱)教授关于人工智能机器学习很重要的课程,也很有意思,可以建议很多学生去看。因此,关于这些继续教育企业他们能够推出一些专门性的、知识性的,甚至是一对一的人工智能的教育,我认为对于学习AI的学生来说大有裨益。
Q
AI在未来可能会给我们普通的生活以及我们的未来生活带来一些什么样的负面影响?像您这样的科学家会去怎样做,来保证我们有一个更加光明的AI方面的未来?
Tom Mitchell:您刚才提的问题非常有趣,也很重要,因为我们需要看到一个技术它的正面和负面,而且也要知道它的潜力所在。AI确实在这几年也是风靡全球,而且它是一个非常有利的技术,但是我们怎么样去使用它,让它为我们人类谋到更大的福利?我认为是特别关键的。首先我认为AI在推动人类社会进步发展这方面的作用是毋庸置疑的,因为它可以大大提高我们的生活质量,包括减少城市当中的污染,减少城市当中的拥堵现象,还有帮我们实现不同语言之间的沟通,还有在医学上实现更精确的诊断,这些都是可以提升我们生活质量的东西。这个技术发展的过程也是不可逆转的,而且我觉得是不应该逆转的。
但是另一方面就可以看到AI的一些负面的效应,以及有些人对于AI的利用,比如说有些人把病毒植入电脑当中,或者是开发出一些智能的AI病毒,来实现他们不可告人的目的。同时有些国家的军方也有可能利用了人工智能这个技术来危害其他的各方,所以我仅仅举以上这两个例子,让大家看清楚AI可以在负面给大家带来的危害。而且我们应该把AI视作一把双刃剑,而且应该让整个社会看到这个双刃剑所在,知道它给我们带来的不同的可能性。只有用这种方法,我们才可以真正帮助社会在解决污染问题,提升医疗质量,同时在减少贫困这方面作出贡献的同时,也让更多的人去思考,包括政策决定者更多去思考它的负面效应,以及我们怎么样预防这样的负面效应。
Q
如何利用人工智能推动教育的发展?
Tom Mitchell:关于在AI方面我们怎么样去利用AI去推进教育的发展,以及在这方面遇到了什么样的挑战?我们确实可以去建立一些全新的在线的教育系统,而且可以通过AI让整个教学过程更加个性化,而且不断的获取学生最新的数据,之后再进一步的把教学的过程个性化。我们现在也有一些相关的科学研究,就提出了这样的一种机器学习的场景,比如说我们设计一个考题给学生,让学生对一个ABCDE进行排序,不同的选项进行排序,学生可能就会给出正确的或者是错误的答案,然后教师在他收到一些学生答案过后,对学生的成绩进行分析,再进行教学,这是我们一种传统的教学。
但现在出现这种新的机器学习和人工智能的工具过后,或许一个机器就可以收集高达十万名学生的答卷,就可以去分析这些答卷当中学生出错的规律,在过去一位老师他可能穷其一生,都不可能接触多达十万名学生。这就可以让大家看到AI的潜力所在,也就是它可以实现大规模的数据收集,或许我们现在这种技术还没有真正得到非常广泛的应用,但是我认为这样一个时代必将到来。
文章部分内容来源:大数据文摘 | bigdatadigest
📚往期文章推荐
🔗人工智能名人堂第55期 | BP算法之父: Paul J. Werbos
🔗人工智能名人堂第54期 | 深度学习鼻祖:Geoffrey Hinton
🔗人工智能名人堂第52期 | SHRDLU系统之父:Terry Winograd
🔗人工智能名人堂第50期 | 李德毅:AI润物无声地改变整个世界
🔗人工智能名人堂第49期 | 斯坦福研究院名人堂成员:Peter E. Hart
🔗人工智能名人堂第48期 |首获图灵奖的亚裔科学家:Raj Reddy
🔗人工智能名人堂第47期 | Shakey机器人共同发明者:Bertram Raphael
🔗人工智能名人堂第46期 | 机器学习泰斗:弗拉基米尔·万普尼克
🔗人工智能名人堂第45期 | AAAI前主席:丹尼尔·鲍勃罗
德先生公众号 | 往期精选
在公众号会话位置回复以下关键词,查看德先生往期文章!
人工智能|机器崛起|区块链|名人堂
虚拟现实|无人驾驶|智能制造|无人机
科研创新|网络安全|数据时代|人机大战
……
更多精彩文章正在赶来,敬请期待!
点击“阅读原文”,移步求知书店,可查阅选购德先生推荐书籍。