用户研究:如何做用户画像分析

2019 年 5 月 9 日 产品100干货速递

用户画像就是根据用户特征、业务场景和用户行为等信息,构建一个标签化的用户模型。简而言之,用户画像就是将典型用户信息标签化。


在金融领域,构建用户画像变得很重要。比如金融公司会借助用户画像,采取垂直或精准营销的方式,来了解客户、挖掘潜在客户、找到目标客户、转化用户。 


以某P2P公司智投产品搞的投资返现活动为例,通过建立用户画像,来避免大量烧钱的运营行为。经过分析得知,出借人A的复投意愿概率为45%,出借人B的复投意愿概率为88%。为了提高平台成交量,在没有建立用户画像前,我们可能会对出借人AB实行同样的投资返现奖励,但分析结果是,只需激励出借人A进行投资,从而节约了运营成本。此外,我们在设计产品时,也可以根据用户差异化分析去做针对性的改进。


对产品经理而言,掌握用户画像的搭建方法,即了解用户画像架构,是做用户研究前必须要做的事情。



一、收集数据 

收集数据是用户画像中十分重要的一环。用户数据来源于网络,而如何提取有效数据,比如打通平台产品信息,引流渠道用户信息,收集用户实时数据等,这也是产品经理需要思考的问题。

 

用户数据分为静态信息数据和动态信息数据。对于一般公司而言,更多是根据系统自身的需求和用户的需要收集相关的数据。

 

数据收集主要包括用户行为数据、用户偏好数据、用户交易数据。


以某跨境电商平台为例,收集用户行为数据:比如活跃人数、页面浏览量PV、访问时长、浏览路径等;收集用户偏好数据:比如登录方式、浏览内容、评论内容、互动内容、品牌偏好等;收集用户交易数据:比如客单价、回头率、流失率、转化率和促活率等。收集这些指标性的数据,方便对用户进行有针对性、目的性的运营。



我们可对收集的数据做分析,让用户信息形成标签化。比如搭建用户账户体系,可自建立数据仓库,实现平台数据共享,或打通用户数据。

 

二、行为建模

行为建模就是根据用户行为数据进行建模。通过对用户行为数据进行分析和计算,为用户打上标签,可得到用户画像的标签建模,即搭建用户画像标签体系。

 

标签建模主要是基于原始数据进行统计、分析和预测,从而得到事实标签、模型标签与预测标签。



标签建模的方法来源于阿里巴巴用户画像体系,广泛应用于搜索引擎、推荐引擎、广告投放和智能营销等各种应用领域。

 

以今日头条的文章推荐机制为例,通过机器分析提取你的关键词,按关键词贴标签,给文章打上标签,给受众打标签。接着内容投递冷启动,通过智能算法推荐,将内容标签跟观众标签相匹配,把文章推送给对应的人,实现内容的精准分发。



三、构建画像

用户画像包含的内容并不完全固定,不同企业对于用户画像有着不同对理解和需求。根据行业和产品的不同,所关注的特征也有不同,但主要还是体现在基本特征、社会特征、偏好特征、行为特征等。



用户画像的核心是为用户打标签。即将用户的每个具体信息抽象成标签,利用这些标签将用户形象具体化,从而为用户提供有针对性的服务。

 

以李二狗的户画像为例,我们将其年龄、性别、婚否、职位、收入、资产标签化,通过场景描述,挖掘用户痛点,从而了解用户动机。其中将21~30岁最为一个年龄段,薪资20~25K作为一个收入范围,利用数据分析得到数据标签结果,最终满足业务需求,从而让构建用户画像形成一个闭环。



用户画像作为一种勾画目标用户、联系用户诉求与设计方向的有效工具,被应用在精准营销、用户分析、数据挖掘、数据分析等。


总而言之,用户画像根本目的就是寻找目标客户、优化产品设计,指导运营策略,分析业务场景和完善业务形态。

EN


登录查看更多
44

相关内容

用户画像是真实用户的虚拟代表,是 建立在一系列真实数据(Marketing data,Usability data)之上的目标用户模型。通过用户调研去了解用户,根据他们的目标、行为和观点的差 异,将他们区分为不同的类型,然后每种类型中抽取出典型特征,赋予名字、照片、一些人口统计学要素、场景等描述,就形成了一个人物原型 。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
基于深度学习的表面缺陷检测方法综述
专知会员服务
93+阅读 · 2020年5月31日
2020年中国《知识图谱》行业研究报告,45页ppt
专知会员服务
239+阅读 · 2020年4月18日
德勤:2020技术趋势报告,120页pdf
专知会员服务
190+阅读 · 2020年3月31日
 【中科院信工所】社交媒体情感分析,40页ppt
专知会员服务
99+阅读 · 2019年12月13日
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
【免费直播课程】用户画像建模实践,只等你来!
R语言中文社区
5+阅读 · 2018年8月3日
五步帮你实现用户画像的数据加工
云栖社区
6+阅读 · 2018年2月4日
思路+步骤+方法,三步教你如何快速构建用户画像
产品100干货速递
9+阅读 · 2017年12月21日
如何利用动态信息数据构建用户画像?
NPDP产品经理资讯
6+阅读 · 2017年10月11日
【大数据】如何用大数据构建精准用户画像?
产业智能官
12+阅读 · 2017年9月21日
教你 5 步画出用户画像
职人社
8+阅读 · 2017年9月13日
你以为自己真的了解用户画像?其实猫腻可多了
THU数据派
8+阅读 · 2017年7月12日
用户画像之用户性别识别
Python技术博文
7+阅读 · 2017年7月7日
Arxiv
92+阅读 · 2020年2月28日
Learning Recommender Systems from Multi-Behavior Data
Arxiv
7+阅读 · 2018年11月29日
Arxiv
8+阅读 · 2018年2月23日
Arxiv
6+阅读 · 2018年2月7日
Arxiv
9+阅读 · 2018年1月30日
VIP会员
相关资讯
【知识图谱】基于知识图谱的用户画像技术
产业智能官
102+阅读 · 2019年1月9日
【免费直播课程】用户画像建模实践,只等你来!
R语言中文社区
5+阅读 · 2018年8月3日
五步帮你实现用户画像的数据加工
云栖社区
6+阅读 · 2018年2月4日
思路+步骤+方法,三步教你如何快速构建用户画像
产品100干货速递
9+阅读 · 2017年12月21日
如何利用动态信息数据构建用户画像?
NPDP产品经理资讯
6+阅读 · 2017年10月11日
【大数据】如何用大数据构建精准用户画像?
产业智能官
12+阅读 · 2017年9月21日
教你 5 步画出用户画像
职人社
8+阅读 · 2017年9月13日
你以为自己真的了解用户画像?其实猫腻可多了
THU数据派
8+阅读 · 2017年7月12日
用户画像之用户性别识别
Python技术博文
7+阅读 · 2017年7月7日
Top
微信扫码咨询专知VIP会员