果断 Mark!27 个免费、低成本 Python 学习资源入手!

2019 年 4 月 15 日 CSDN

作者  | Best Python Podcasts[0]

译者  | 豌豆花下猫

责编 | 胡巍巍

我国互联网的发展道路与欧美不同,在内容的形式上,我们似乎实现了跨越式的发展——早早进入了移动互联网时代,直播和短视频等形式的内容成为了潮流,而文字形式的博客(blog)与声音形式的播客(podcast)则(逐渐)成为了小众。智能手机极大地改变了我们的上网习惯。

诚然,仍有一些受众广泛的聚合类的平台,例如微信公众号、CSDN、喜马拉雅、荔枝FM等,为我们提供丰富的博客与播客,但是,不依赖平台的个人博客与个人播客,则鲜有人知。

依我的使用习惯,我很喜欢听音频节目,也即是播客。中文的播客听了不少,但是,免费的 Python 播客是极其稀少。

直到发现了 Full Stack Python 网站上的一篇文章,它汇总介绍了一些非常棒的 Python 播客,大部分节目仍在持续更新中。我特翻译出来,分享给大家。

英文节目对大多数人来说,可能门槛较高,但是英文是程序员的必修功课 ,聆听英文节目,正好可以一边学技术,一边练习英语,一举两得。

Python 社区里有很多免费或低成本的学习资源,对新手与有经验的开发者来说,是一大福音。这些优秀的资源就包括很多定期更新的 Python 播客节目。

本文介绍了一些活跃的、与 Python 或软件工程相关的、高质量的播客。


Python 相关的播客


这些播客的运营者都是 Python 开发者,他们关注的都是我们领域内很重要的话题。每个播客系列都有很长的历史列表,有的节目录于几年前,因此我们有丰富的材料可以聆听与学习。

播客:Talk Python to Me

  • Talk Python to Me[1] 专注于 Python 开发者和组织,每期节目会邀请不同的嘉宾来谈论 ta 的工作

  • Podcast.__init__[2] 提供有关 Python 的故事,以及“与那些让它变得更棒的人们的访谈”

  • Python Bytes[3] 是来自“Talk Python to Me”和“Test and Code Podcast”创作者的新播客

  • Test and Code Podcast[4] 侧重于测试与相关主题,如模拟(mock)和代码度量

  • Philip Guo 教授有一个名为 PG Podcast[5] 的视频播客,基本是关于 Python 主题的

  • Import This[6] 是 Kenneth Reitz 和 Alex Gaynor 间歇更新的播客,对有影响力的 Python 社区成员进行深度的采访

K神主持的播客


最喜欢的播客节目


以下是我从各大播客中收集的最喜欢的一些节目,听听这些内容,你可以感受到其余播客节目的风格。

  • SQLAlchemy and data access in Python[7] 让我理解了对象关系映射库 SQLAlchemy 的知识及其演变过程。这期节目采访了 SQLAlchemy 的作者,主持人 Michael Kennedy 根据他对 SQLAlchemy 的深入研究和使用经验提出了很多问题。

  • Python past, present, and future with Guido van Rossum[8] 涵盖了 Python 的历史、Guido 创造并持续三十年来发展这门语言的动机。有趣的事实:当播客主持人迈克尔·肯尼迪向我征询话题时,我贡献了一个问题,即 Python 的开源是否是促使它成功的原因?

  • Deploying Python Web Applications[9] 剧透预警:这是我在 Talk Python to Me 上的一期节目,介绍了 Python Web 应用程序部署的工作原理。

  • Python Bytes 栏目在第 39 集中广泛地讨论了 object-relational mappers (ORMs)[10] ,其中不少讨论是基于 Full Stack Python 上的文章。谢谢大家对我们提出的反馈与建议。

  • Python at Netflix[11] 出自 Talk Python to Me,通过一个非常棒的视角,介绍了 Python 是怎么运用于这家最大的网络流媒体公司,以及如何适应它们的多语言组织。

  • 另一个很棒的 Talk Python to Me 节目,Python in Finance[12],介绍了 Python 在金融行业中的广泛用途:股票交易、定量分析和数据分析。如果你想知道像对冲基金这样的不透明的私营企业是如何利用 Python 赚取(大量)钱财的,一定要听听这个。

节目:Python at Netflix


通用软件开发的播客


这些播客主要探讨的是软件开发相关的主题,但经常也会涉及 Python 的内容。聆听和学习这些播客,你将会成为更加优秀的软件开发者。

  • Software Engineering Daily[13] 令人难以置信的是每天邀请不同的开发者嘉宾,谈论话题非常广泛,与开发相关。

  • All things Git[14] 教人如何使用、构建及将 Git 用于工作,每两周一更。

  • CodeNewbie[15] 采访新入行的开发者,谈论为什么他们要从事编程工作,以及他们的工作内容。该栏目也会采访一些经验丰富的、打造了知名项目的开发者。

  • Developer on Fire[16] 采访程序员、架构师和测试人员,讲述他们成功、失败和卓越的故事。

  • Command_line Heroes[17] 涵盖操作系统级的主题以及 DevOps。

  • Embedded.fm[18] 涵盖嵌入式系统和硬件黑客攻击。

  • The Changelog[19] 周更播客,关于常规软件开发的问题。

  • Full Stack Radio[20] 虽与 Full Stack Python 无关,但值得关注!

  • Exponent[21] 不是一个软件开发的播客,但它以深入的方式揭示了企业的战略和技术,使我能够更好地理解企业在构建和发布软件时所做出的决策。我听了每一集(以 1.5 倍速),非常推荐每周花 45 到 60 分钟,听 Ben Thompson 和 James Allworth 深入讨论一个主题。

  • Test Talks[22] 每周考察一个软件测试的主题,通常会特邀一位钻研该领域的嘉宾。

  • The Cloudcast[23] 聚焦于云计算和 DevOps 的相关主题。


数据科学与数据分析的播客


Python不仅是数据科学社区的核心编程语言,而且几乎在每个使用数据分析的组织中都发挥着重要作用。以下播客广泛地涵盖数据科学,并经常涉及到 Python 生态系统中特定的工具。

播客:DataFramed

  • DataFramed[24] 是一个数据科学播客,内容涵盖 Python 标准库,以及数据分析者感兴趣的其它内容。

  • Data Skeptic[25] 涵盖数据科学、统计、机器学习、人工智能,以及“科学怀疑论”(scientific skepticism)等内容。

  • Data stories[26] 是个关于数据可视化的播客。

  • Partially Derivative[27] 是一个关于机器学习、人工智能和数据行业的播客,在 2017 年底已停播,节目列表包含了大量的内容。

作者:豌豆花下猫,某985高校毕业生, 兼具极客思维与人文情怀。公众号Python猫,专注Python技术、数据科学和深度学习,力图创造一个有趣又有用的学习分享平台。

声明:本文为作者投稿,版权归作者个人所有。

免责声明:文章广告为微信自动匹配,与本平台无关,如遇假冒伪劣请联系微信进行举报。

【End】

 热 文 推 荐 

戳他↓↓↓

☞马云再谈 996:真正的 996 与被剥削无关

☞摩拜被收购的这一年

☞曾断崖式跌落的三星,能否在中国东山再起?

☞Python的10个“秘籍”,这些技术专家全都告诉你了

☞漫画:图的 “最短路径” 问题 | 技术头条

☞从 0 到管理 200 人,这位程序员是如何做到的? | 程序员有话说

☞4000万假币流入波场, 发生在凌晨的BTT假币攻击事件始末及细节披露

System.out.println("点个在看吧!");
console.log("点个在看吧!");
print("点个在看吧!");
printf("点个在看吧!\n");
cout << "点个在看吧!" << endl;
Console.WriteLine("点个在看吧!");
Response.Write("点个在看吧!");
alert("点个在看吧!")
echo "点个在看吧!"

你点的每个“在看”,我都认真当成了喜欢

登录查看更多
1

相关内容

Python是一种面向对象的解释型计算机程序设计语言,在设计中注重代码的可读性,同时也是一种功能强大的通用型语言。
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
109+阅读 · 2020年6月27日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
236+阅读 · 2020年5月21日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
162+阅读 · 2020年5月14日
【资源】100+本免费数据科学书
专知会员服务
108+阅读 · 2020年3月17日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
从零开始用Python写一个聊天机器人(使用NLTK)
AI研习社
10+阅读 · 2018年12月27日
Python用法速查网站
Python程序员
17+阅读 · 2018年12月16日
自然语言处理NLP快速入门
专知
20+阅读 · 2018年10月8日
吃鸡手游竟然是Python写的?
机器学习算法与Python学习
7+阅读 · 2018年9月11日
资源 | Python程序员深度学习“四大名著”之一
AI研习社
94+阅读 · 2018年8月25日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
值得收藏的45个Python优质资源(附链接)
数据派THU
4+阅读 · 2018年2月10日
Few-shot Learning: A Survey
Arxiv
362+阅读 · 2019年4月10日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
22+阅读 · 2018年8月30日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月4日
Arxiv
20+阅读 · 2018年1月17日
VIP会员
相关VIP内容
【DeepMind推荐】居家学习的人工智能干货资源大全集
专知会员服务
109+阅读 · 2020年6月27日
【实用书】Python技术手册,第三版767页pdf
专知会员服务
236+阅读 · 2020年5月21日
干净的数据:数据清洗入门与实践,204页pdf
专知会员服务
162+阅读 · 2020年5月14日
【资源】100+本免费数据科学书
专知会员服务
108+阅读 · 2020年3月17日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
95+阅读 · 2019年12月23日
TensorFlow 2.0 学习资源汇总
专知会员服务
67+阅读 · 2019年10月9日
相关资讯
移动端机器学习资源合集
专知
8+阅读 · 2019年4月21日
从零开始用Python写一个聊天机器人(使用NLTK)
AI研习社
10+阅读 · 2018年12月27日
Python用法速查网站
Python程序员
17+阅读 · 2018年12月16日
自然语言处理NLP快速入门
专知
20+阅读 · 2018年10月8日
吃鸡手游竟然是Python写的?
机器学习算法与Python学习
7+阅读 · 2018年9月11日
资源 | Python程序员深度学习“四大名著”之一
AI研习社
94+阅读 · 2018年8月25日
最全数据科学学习资源:Python、线性代数、机器学习...
人工智能头条
12+阅读 · 2018年5月14日
值得收藏的45个Python优质资源(附链接)
数据派THU
4+阅读 · 2018年2月10日
Top
微信扫码咨询专知VIP会员