新智元报道
编辑:鹏飞、大明
人工智能三大支柱:算力、算法和数据。数据,就是人工智能这只大军的粮草;算法就是装备;而算力则是战力。
战力反应了一支军队的实力。同样的,算力也直接反应了一个城市在人工智能领域的投入和实力。
今天,以“计算,预见AI未来”为主题的2019人工智能计算大会(AICC2019)在北京拉开帷幕。
会上,不仅IDC和浪潮联合发布《2019-2020中国人工智能计算力发展评估报告》,分享并探讨了中国AI算力、数据、投资、基准等诸多人工智能领域的现状和未来。同时浪潮还公布其“元脑生态”大计划,聚焦当前阶段产业AI化的落地应用需求。
浪潮称,将共享其三大核心平台:高效创新的AI计算平台、敏捷协作的AI资源平台和即时交付AI算法工具平台。最终由具备AI功能开发核心能力的科技公司——左手伙伴,和具备实施AI整体解决方案能力的SI、ISV——右手伙伴,以及浪潮共同创建“元脑生态”。
算力是人工智能发展的基础保障,未来仍有很大的发展空间。而随着数据的获取及处理的门槛在不断的下降,加上算法在不断优化,算力也开始不断提升,对芯片的需求也逐渐丰富起来。
狭义上的AI芯片特指AI加速器或计算卡,是专门用于加速AI应用中、大量计算任务的模块。而从广义来看,只要是面向AI计算的芯片,都可以称其为AI芯片,例如GPU、FPGA、ASIC等。
目前,人工智能领域的主流芯片依然是GPU芯片,其中英伟达和AMD是比较突出的两大厂商。
FPGA经常用做ASIC芯片的小批量替代品,近年来在微软和百度等公司的数据中心有部署,以提供强大的计算力和足够的灵活性。目前市场上应用比较多的是Xilinx和Intel两大厂商。
ASIC芯片是针对专⻔应用而特别设计的,所以可以满足体积小,功耗低,保密性强,计算效率高等用戶需求,并且出货量越大其成本越低。目前,国内主要的ASIC芯片供应商包括寒武纪、地平线、华为等,国外有Graphcore等。
而芯片从不同的维度,可以划分为不同的类型。从承担任务的角度可以将芯片划分为训练芯片和推理芯片;从部署的位置可以划分为云、边、端等。
训练芯片主要是处理海量数据,从而训练出复杂的深度神经网络。这个过程运算量非常大,需要庞大的计算规模,对于处理器的计算能力、精度、可扩展性等性能要求很高,目前主要依靠GPU集群。
而推理则是训练的下一个阶段。直接利用已经训练越好的模型,使用新的数据去推理出各种结论,例如通过人脸识别去判断一个人的年龄。虽然相比训练芯片,推理芯片的计算量少了,但更注重综合指标,包括单位能耗算力、时延、成本等都要考虑。
根据IDC预计,到2022年,人工智能推理市场占比将达到52.1%,首次超过训练市场。这意味着,未来已不再是单纯的算力比拼,将会更加注重多种指标的综合。不光要算的快,还要算的巧、算的妙。
未来,GPU依然是数据中心加速的首选,但随着边缘、端侧需求的快速增⻓,人工智能芯片市场将迎来多元化发展。
不断膨胀的人工智能市场,带动人工智能服务器的发展驶入了快⻋道。IDC预计到2023年,中国人工智能基础架构市场将超过80亿美金,未来五年年复合增⻓率达到33.8%,增速是中国整体基础架构市场的三倍以上。
服务器厂商相继推出搭载GPU、FPGA等多种加速类型专⻔AI服务器,适用于深度学习、计算机视觉、语音识别、NLP、视频分析等多个领域,广泛应用于视频监控、图像处理、自动化客服、精准营销推荐等典型AI应用场景。
另外,一些厂商也推出了专用的GPU一体机,如英伟达的DGX系列服务器和浪潮的AGX系列服务器。
全球人工智能基础设施市场规模在2023年将达到229亿美元,未来五年复合增⻓率为27.9%。
中国人工智能基础架构市场在2023年将达到83亿美元,未来五年复合增⻓率为33.8%,其中服务器市场规模占整个硬件市场85%以上。
16卡GPU服务器增⻓迅速,销售额从2017年的2090万美元增⻓到2018年的2.63亿美元,同比增速高达1161.7%!而在GPU服务器整体份额中,浪潮占比最高,份额接近8成。
另外,GPU中的M4、P4、T4型号份额占比从8.5%提升到27.6%;FPGA销售额同比增⻓1736.1%。这一趋势表明,中国人工智能已逐渐步入大规模应用阶段,产业AI化进程正不断加速。
2018年中国GPU服务器市场份额排名前三的供应商依次为浪潮、华为和曙光,其中浪潮占比超过50%。
浪潮凭借较早的进入人工智能领域,通过JDM模式与领先互联网公司进行深入合作,在中国互联网行业,浪潮GPU服务器市场份额超过60%,并不断向传统行业渗透。
这意味着未来人工智能将会是传统企业数字化转型的关键,IDC预测到2023年,全球35%的员工将开始使用机器人或其他形式的人工智能。
而战力的保障是粮草。三军未动粮草先行,粮草决定了军队能否好无后顾之忧的打持久战。
根据IDC和浪潮联合发布《2019-2020中国人工智能计算力发展评估报告》指出,全球新创建的数据量将从2018年的33ZB增⻓到2025年的175ZB。
175ZB的数据量是个什么概念呢?如果换算成4K版哪吒之魔童降世,大概相当于70000亿部。
另据《IDC:2025年中国将拥有全球最大的数据圈》白皮书显示,在所有国家中,中国数据圈的增量最显著!
2018年,中国数据圈7.6ZB,占全球数据圈23.4%。而IDC预计到2025年时,这个数字将变成48.6ZB,占全球数据圈的27.8%。届时,中国将成为全球最大的数据圈!
其中,数据增长主要动力来自娱乐平台、视频监控录像、联网设备、生产力工具和元数据,这些数据对于信息的分析和上下文化至关重要。
在数字经济时代,数据在各行各业扮演的角色越来越重要,公司也越来越倚重数据,并且这种依赖只会在未来不断增加。
据IDC统计,世界领先的互联网公司大数据量已达到上千PB,传统行业⻰头型企业数据量也能达到PB级,个人也能够产生数千TB数据。
这些数据资源类型丰富、场景各异,为人工智能系统自主学习并建立预测模型提供了丰沃的土壤。
除了使用实际数据,未来人工智能系统还将越来越多的 使用大量模拟数据用于模型训练,这也将使得人工智能模型的开发速度大幅升。
可以说在未来,谁的粮草足、数据多,谁就占据了先机。同时,数据量的暴增也在催着算力不断升级。