登上Nature,它是最成功的AI新冠应用?

2021 年 11 月 13 日 学术头条


“非必要不出游”,这个句子随着疫情的持续已深入人心。

但对于以旅游业为支柱的国家来说,这句话是一个必须驱赶掉的噩梦。

比如希腊。旅游业是希腊重要经济支柱,占国内生产总值 20% 以上。希腊有大约 1100 万人口,近年来每年接待超过 3300 万游客,旅游业占该国就业人数的近 20%。


疫情的爆发对这个国家的经济带来了破坏性影响,以致于疫情爆发不久,当一位数据科学家给希腊总理发送邮件、询问他们是否需要任何额外的建议时,他在数小时内就收到了 Kyriakos Mitsotakis 总理的答复。

这位数据科学家名叫 Kimon Drakopoulos,在洛杉矶的南加州大学从事数据科学工作,来自希腊。

彼时,欧盟要求成员国从 2020 年 7 月起允许“非必要旅行”,其中许多成员国在3月实施了广泛的封锁。希腊政府在决定何时以及如何重新开放边境方面需要帮助。

与许多其他国家一样,希腊缺乏对所有旅客进行检测的能力,尤其是那些没有出现症状的旅客。

2020 年 8 月至 11 月期间,根据 Drakopoulos 及其同事的意见,当局启动了一个由多国科学家小组开发的系统,该系统使用机器学习算法来确定哪些入境旅客应接受 COVID-19 检测。

结果发现,机器学习在识别无症状人员方面比随机测试或基于旅行者原籍国的测试更有效。根据研究人员的分析,在旅游旺季,该系统检测到的受感染旅客是随机检测的两到四倍。

这个系统称为 Eva。由南加州大学马歇尔商学院的 Kimon Drakopoulos 和 Vishal Gupta,宾夕法尼亚大学沃顿商学院的 Hamsa Bastani,AgentRisk 的创始人 Jon Vlachogiannis,以及希腊政府官员合作开发。


详细介绍 Eva 的论文发布于近日的《自然》杂志。论文标题为 Efficient and targeted COVID-19 border testing via reinforcement learning

在人类利用 AI 对抗新冠疫情的诸多尝试中,Eva 可谓是实践中最为成功的案例之一。

Eva 的成功之处



简单来说,Eva 可使用实时数据识别高风险访客进行测试。


图丨Eva工作流程示意图


在整个 COVID-19 大流行期间,不少国家依靠各种临时边境控制协议,在保障公共卫生的同时允许必要的旅行:从隔离所有旅行者,到根据病例、死亡或阳性检测率等全民流行病学指标限制特定国家人员入境。

许多国家/地区会随机或根据风险类别选择旅客进行 COVID-19测试。例如,来自高感染率地区的人可能比来自低感染率地区的人优先接受检测。

但 Eva 有所不同,Eva 将实时检测数据与访客在抵达前 24 小时填写的简单表格中的信息相结合,为每位访客建立风险状况评估,建议哪些游客在抵达时应接受 COVID-19 检测,哪些游客可以不经检测就安全入境。

最关键的是,与全国范围的方案不同,部署于希腊边境的 Eva,不仅收集了旅行历史信息,还从进入希腊所需的乘客信息表中收集了年龄和性别等人口统计数据,然后将这些特征与之前接受过测试的乘客的数据进行匹配,并利用该结果来估计个人的感染风险,进而分配希腊有限的检测资源。

借助 Eva,希腊每天对抵达或途经该国的估计 41,830 户家庭中的约 17% 进行检测。通过将 Eva 的性能与模拟情景进行比较,研究发现,Eva 发现的感染的旅行者比原先严格按照其国籍检测的方式(即只利用流行病学指标的检测政策)多 1.25-1.45 倍。与随机检测相比,Eva 在旅游旺季(8 月和 9 月)发现感染的旅行者是前者的 4 倍,非旅游旺季的结果是随机检测的 1.85 倍。



图丨Eva 与随机监测试验的比较


也就是说,Eva 证明了强化学习算法和实时数据在保障公共卫生方面的潜力。

Eva 的基础算法,强调从实时数据中学习,而且团队还为算法搭建了一个数据“通道”,使其可以以近乎实时的方式无缝、安全地访问来自不同希腊政府数据库匿名数据。这也得益于开发团队与希腊公共卫生和政策领导人的顺流接洽,他们可以持续根据希腊的特殊情况调整 Eva。

Eva 的风险评估、测试分配和其他数据分析相组合,就像一个实时仪表盘,直观地向希腊政府展示最新信息,以供决策参考。

“希腊模式”,未来可期?



毫无疑问,Eva 的成功给了整个团队莫大的鼓舞。

“我们与 Eva 的合作证明,仔细整合实时数据、人工智能和精益运营比传统的、广泛使用的流行病管理方法具有巨大的优势。

Eva 最令人兴奋的元素之一是其学习、改进和发展的能力。在这场大流行中,实时适应是至关重要的,那里的局势可能在一两天内发生巨大变化。新的测试结果不断地被纳入动态学习算法中,这使得 Eva 比静态 COVID-19 筛选策略具有明显的优势。这是循证决策的令人兴奋的一步。”团队成员、南加州大学马歇尔大学数据科学副教授 Gupta 说。

“对我来说,这不仅是要把我在数据科学方面的工作应用于帮助希腊人民,而且也要帮助那些热爱旅行并担心旅行安全的世界人民。”,从一封邮件开始促成 Eva 的 Drakopoulos 说道。

“Bastani、Drakopoulos、Gupta 和 Vlachogiannis 开发的人工智能系统不仅为国家向世界各地的游客开放做了准备,也为我们的 COVID-19 战略决策提供了灵活性,”Nikos 希腊公民保护部和危机管理部副部长,负责该国 COVID-19 应急工作组的 Hardais 说。

Eva 诞生的根本原因在于,由于供应链问题,希腊本国的 COVID 检测用品供应有限,在资源有限的情况下,他们必须确定通过其边境 40 个不同入口中的任何一个入境的可能受感染旅行者。希腊所面临的这种挑战,也是很多国家都在面对的。这也意味着,Eva 或许也能帮助其他这些国家。

但这又涉及到另一个问题,那就是数据共享。

其实,在流行病爆发期间,关于如何部署大数据和人工智能来改善公共健康或评估大流行的经济影响,一直不乏想法。




然而,这些想法很少付诸实践,这在一定程度上是因为持有相关数据(如移动电话记录或金融交易细节)的公司和政府,在与研究人员共享数据之前,需要建立数据交换系统。目前还不清楚如何获得使用此类个人数据的许可,以及如何确保这些数据被安全、安全地存储。

而 Eva 是在咨询律师后开发的,律师确保该项目遵守欧盟通用数据保护条例(GDPR)提供的隐私保护。根据 GDPR,航空公司等收集个人数据的组织需要遵循安全标准,并获得存储和使用数据的许可,并与公共机构共享这些数据。收集的信息往往仅限于所述目的所需的最低数量。

现在已有多种收集数据的方法,但许多政策制定者在流行病爆发期间仍无法访问和利用数据。各国政府渴望在突发卫生事件中部署大数据应对措施,但这也需要建立在法律、道德的基础之上。如果要复制 Eva 的成功,研究人员和资助者应提前制定数据共享协议和隐私保护协议。

无论如何,Eva 展示了这种可能性。如团队成员 Vlachogiannis 所言:“对那些热爱旅行、渴望走出大流行的人来说,这是充满希望的时刻。此外,这也是由数据科学、机器学习和算法支持政府管理的具有重要性的时刻。”

Reference:
https://www.nature.com/articles/s41586-021-04014-z


点这里关注我👇记得标星~





热门视频推荐

更多彩视频,尽在学术头条视频号,欢迎关注~


# 往期推荐 #

姚期智2021年京都奖演讲全文:计算机科学之旅


最新研究:怎样才算一见钟情?



登录查看更多
0

相关内容

【Nature. Mach. Intell. 】图神经网络论文汇集
专知会员服务
47+阅读 · 2022年3月26日
Nature论文: DeepMind用AI引导直觉解决数学猜想难题
专知会员服务
30+阅读 · 2021年12月2日
【Twitter】时序图神经网络
专知会员服务
94+阅读 · 2020年10月15日
Nature长文:打破AI黑盒的“持久战”
大数据文摘
0+阅读 · 2022年4月13日
机器学习医学进展有助改善肠道疾病检测
TensorFlow
0+阅读 · 2021年8月31日
Nature 一周论文导读 | 2018 年 3 月 29 日
科研圈
12+阅读 · 2018年4月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
24+阅读 · 2021年1月25日
Arxiv
14+阅读 · 2020年9月1日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员