编辑:深度传送门
加“动手学深度学习+TF2.0”交流群请添加助手:deepdeliver(备注:姓名-学校/公司-方向)
关于项目
本项目将《动手学深度学习》(Dive into Deep Learning)原书中的MXNet实现改为TensorFlow 2.0实现,项目已得到李沐老师的同意。
此书的中、英版本存在一些不同,本项目主要针对此书的中文版进行TensorFlow2.0重构。另外,本项目也参考了对此书中文版进行PyTorch重构的项目Dive-into-DL-PyTorch(https://github.com/ShusenTang/Dive-into-DL-PyTorch),在此表示感谢。
面向人群
本项目面向对深度学习感兴趣,尤其是想使用TensorFlow 2.0进行深度学习的童鞋。本项目并不要求你有任何深度学习或者机器学习的背景知识,你只需了解基础的数学和编程,如基础的线性代数、微分和概率,以及基础的Python编程。
目录
简介
阅读指南
1. 深度学习简介
2. 预备知识
2.1 环境配置
2.2 数据操作
2.3 自动求梯度
2.4 查阅文档
3. 深度学习基础
3.1 线性回归
3.2 线性回归的从零开始实现
3.3 线性回归的简洁实现
3.4 softmax回归
3.5 图像分类数据集(Fashion-MNIST)
3.6 softmax回归的从零开始实现
3.7 softmax回归的简洁实现
3.8 多层感知机
3.9 多层感知机的从零开始实现
3.10 多层感知机的简洁实现
3.11 模型选择、欠拟合和过拟合
3.12 权重衰减
3.13 丢弃法
3.14 正向传播、反向传播和计算图
3.15 数值稳定性和模型初始化
3.16 实战Kaggle比赛:房价预测
4. 深度学习计算
4.1 模型构造
4.2 模型参数的访问、初始化和共享
4.3 模型参数的延后初始化
4.4 自定义层
4.5 读取和存储
4.6 GPU计算
5. 卷积神经网络
5.1 二维卷积层
5.2 填充和步幅
5.3 多输入通道和多输出通道
5.4 池化层
5.5 卷积神经网络(LeNet)
5.6 深度卷积神经网络(AlexNet)
5.7 使用重复元素的网络(VGG)
5.8 网络中的网络(NiN)
5.9 含并行连结的网络(GoogLeNet)
5.10 批量归一化
5.11 残差网络(ResNet)
5.12 稠密连接网络(DenseNet)
6. 循环神经网络
6.1 语言模型
6.2 循环神经网络
6.3 语言模型数据集(周杰伦专辑歌词)
6.4 循环神经网络的从零开始实现
6.5 循环神经网络的简洁实现
6.6 通过时间反向传播
6.7 门控循环单元(GRU)
6.8 长短期记忆(LSTM)
6.9 深度循环神经网络
6.10 双向循环神经网络
7. 优化算法
7.1 优化与深度学习
7.2 梯度下降和随机梯度下降
7.3 小批量随机梯度下降
7.4 动量法
7.5 AdaGrad算法
7.6 RMSProp算法
7.7 AdaDelta算法
7.8 Adam算法
8. 计算性能
8.1 命令式和符号式混合编程
8.2 异步计算
8.3 自动并行计算
8.4 多GPU计算
9. 计算机视觉
9.1 图像增广
9.2 微调
9.3 目标检测和边界框
9.4 锚框
9.5 多尺度目标检测
9.6 目标检测数据集(皮卡丘)
待更新...
10. 自然语言处理
10.1 词嵌入(word2vec)
10.2 近似训练
10.3 word2vec的实现
10.4 子词嵌入(fastText)
10.5 全局向量的词嵌入(GloVe)
10.6 求近义词和类比词
10.7 文本情感分类:使用循环神经网络
10.8 文本情感分类:使用卷积神经网络(textCNN)
10.9 编码器—解码器(seq2seq)
10.10 束搜索
10.11 注意力机制
10.12 机器翻译
持续更新中......
注意事项:受限于微信不能放站外链接,详细目录的链接可查看文章末尾点击左下角原文链接的GitHub地址进行学习、star以及fork,后续仓库会持续更新相关内容。
GitHub现已更新到第五章,持续更新中。。。
https://github.com/TrickyGo/Dive-into-DL-TensorFlow2.0
对项目感兴趣希望加入“动手学深度学习+TF2.0”群聊的朋友,请加助手:deepdeliver。
(备注:姓名+学校/公司+方向)
本文转载自公众号:深度传送门,作者 深度传送门
推荐阅读
Google工业风最新论文, Youtube提出双塔结构流式模型进行大规模推荐
关于AINLP
AINLP 是一个有趣有AI的自然语言处理社区,专注于 AI、NLP、机器学习、深度学习、推荐算法等相关技术的分享,主题包括文本摘要、智能问答、聊天机器人、机器翻译、自动生成、知识图谱、预训练模型、推荐系统、计算广告、招聘信息、求职经验分享等,欢迎关注!加技术交流群请添加AINLP君微信(id:AINLP2),备注工作/研究方向+加群目的。